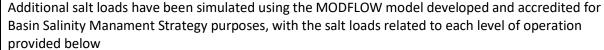
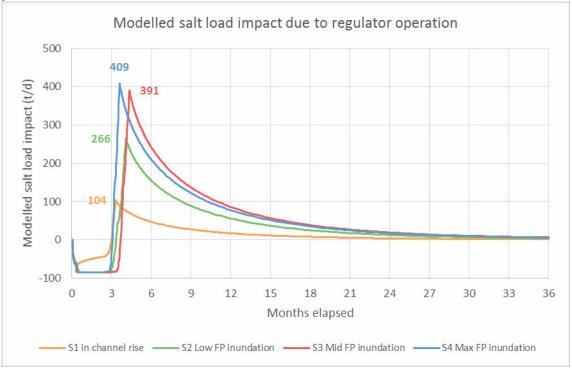
Environmental works and measures at point locations

Referenc e no.	Title of measure	The Living Murray Environmental Works and s					
	Person undertaking the measure	South Au	stralia, New South Wales and Victoria				
	Short description of measure	The Chowilla Floodplain works is part of a program of The Living Murray (TLM) works at icon sites along the River Murray to ensure that environmental water recovered as part of The Living Murray program is used efficiently and ecological elements are maintained. The Chowilla Floodplain project involves a major environmental regulator on the Chowilla Creek and a range of complementary works. The environmental regulator will allow flows to be managed to enable flooding across the floodplain under relatively low rive flow conditions.					
1.	Confirmation						
	Capacity of the measure to operate as a sup measure 'Supply measure' is defined in section 7.03 of the Basi mean 'a measure that operates to increase the quant available to be taken in a set of surface water SDL res compared with the quantity available under the bench conditions of development'.	n Plan to ity of water ource units	Yes - the Chowilla TLM Environmental works and measures meets the definition of a 'supply measure'.				
	Confirmation that the measure entered into enter into operation by 30 June 2024 <i>Basin Plan 7.12(3)(a)</i>	Yes - the Chowilla TLM Environmental Works and Measures will be operational by 30 June 2024. The structures are currently undergoing testing.					
	Confirmation that the measure is not an 'an measure' Basin Plan 7.12(3)(b) 'Anticipated measure' is defined in section 7.02 of the Plan to mean 'a measure that is part of the benchmar conditions of development'.	e Basin	Yes - the TLM program of works are not included in the benchmark conditions of development. Section 3.3.5 of the MDBA's <i>Benchmark conditions of development for</i> <i>adjustment of SDLs report</i> indicates that although the BP-2800 scenario included the operations of the TLM works, for the benchmark for SDL-adjustment the Basin Plan mandated that the works and their operations be removed.				
	Confirmation that the proponent state(s)undertaking the measure agree(s) w template Basin Plan 7.12(3)(c) Joint proposals will need the agreement of all propose		Confirmed.				
2.	Surface water SDL resource units affected I Basin Plan s 7.12(4)(b)		isure				
	This measure identifies all surface water resource units in the Southern Basin region as affected u for the purposes of notifying supply measures. The identification of affected units does not constitute an agreement between jurisdictions on apportioning the supply contribution, which will be required in coming months.						

3.	Details of relevant constraint measures Basin Plan s 7.12(4)(c)
	This project is not reliant on constraint measures for implementation or operation.
4.	Date on which the meausure entered into, or will enter into, operation Basin Plan s 7.12(4)(d))
	30/06/2024
5.	Details of the measure Basin Plan 7.12(4)(a)
	 Description of the works The works undertaken on the Chowilla floodplain include: Construction of an environmental regulator on Chowilla Creek incorporating denil and vertical slot fishways Construction of ancillary structures: Woolshed Creek South regulator Woolshed Creek East regulator Chowilla Island Loop channel and channel regulator Chowilla Island Loop channel and Channel regulator Chowilla Island Loop regulator Upgrade of existing weirs on Pipeclay and Slaney Creeks to provide for more flexible operations for environmental management and incorporating combined denil and vertical slot fish passage Replacement of Bank E with a rock ramp fishway Replacement of Boat Creek bridge to remove flow restriction, improve fish passage and improve access A schematic of the MSM-Bigmod representation of the Chowilla floodplain is attached at Attachment A. Level-volume-area relationships are detailed at Attachment C This project is not reliant on other supply or constraint measures for implementation or operation. Hydrology and hydraulic relationships ar the site A schematic of the MSM-Bigmod representation of the Chowilla floodplain is attached at Attachment A. Level-volume-area relationships are detailed at Mtachment C. Flow between the river and the site is regulated at the Pipeclay and Slaney regulators. There are other unregulated flows into the site from the river (e.g. Hyperna Creek). Inflows to the site with structures open as implemented in the MSM-BigMod model are outlined below.


River Flow (ML/d)	Inflow (ML/d)
0	0
500	359.9907
1000	845.1452
1500	1128.942
2000	1330.3
2500	1486.485
3000	1614.097
3500	1721.992
4000	1815.454
4500	1897.894
5000	1971.639
10000	2456.794
15000	2740.591
20000	2941.948
30000	3635
40000	11552
50000	19469
75000	39261.5
100000	59054
150000	98639
200000	138224


Spatial representation of the site in MSM-BigMod (Level-volume-area relationship) is provided below.

Level (m)	Volume (ML)	Area (ha)
16.2	0	0
18	0	0
19.25	10336	720
19.87	36000	3360
25	36056	3360

Once inflows to the site are calculated, the MSM-BigMod model applies hydrologic routing to
calculate level, volume and inundation area. Outflow can be controlled by the Chowilla Regular, with
maximum outflows presented below.

presented below	ν.
Level (m)	Discharge
	(ML/d)
0	0
16.2	0
16.35	1972
16.46	2222
16.66	2457
17	2706
17.4	2942
17.9	3165
18.2	3635
18.62	11552
19.05	19469
19.25	23428
19.4	27386
19.65	35303
19.85	43220
19.87	43853.36
20.1	51137
20.3	59054
20.6	74888
20.77	90722
20.9	106556
21	122390
22.04	217394

Interaction between river flows and inflow into the works proposal area

Inflows to Chowilla Anabranch, Pipeclay Creek and Slaney Creek are calculated using relationships with the flow at the South Australian border (SA Flow), included in tables below. Special code has been developed to include the impacts of backwater, based on level in the Chowilla Regulator and Lock 6. At low flows the inflow to Woolshed Creek is calculated in special code, using SA Flow and levels in Chowilla Regulator and Lock 6. For SA Flows over 60,000 ML/d the inflows to Chowilla Regulator and Woolshed are based on the tables only. Floodplain retention is also modelled as a weir, with inflow to retention storage calculated in special code. The retention storage has no outflow, and any water in floodplain retention is left to evaporate.

Chowilla Anabranch		Pipeclay (Creek	Slaney Cr	eek	Woolshed			
SA Flow	Inflow	SA Flow	Inflow	SA Flow Inflow			SA Flow	Inflow	
0	0	3000	175	3000	300		60000	1200	
3000	1150	3500	220	3500	380		80000	3576	
5000	1171	4000	330	4000	515		100000	10841	
10000	1283	4500	600	4500	650		120000	16055	
15000	1515	5500	1670	5500	660		150000	22446	
20000	1872	6000	2070	6000	660				
30000	2980	7000	2325	7000	660				
40000	3922	10000	2480	10000	680				
50000	4988	15000	2550	15000	725				
60000	6540	20000	2640	20000	790				
70000	10353	30000	2875	30000	960				
		40000	3150	40000	1150				
		50000	3420	50000	1370				
		60000	4000	60000	2000				
		150000	4000	150000	2000				

Special code used to calculate flow to the Chowilla Floodplain:

Special code	Number
Chowilla Anabranch	102
Pipeclay Creek	331
Slaney Creek	332
Woolshed Creek	299
Floodplain Retention	321

Return flow from the sites to the river

Lakes

The level in the Chowilla Anabranch at offtake points for the lakes is calculated using tables below.

Lake Littra		Lake G	umflat	Lake Limbra			ke 1bool	Werta wet	
Flow	Level	Flow	Level	Flow	Level	Flow	Level	Flow	Level
0	16.00	0	16.30	0	14.60	0	12.10	0	14.60
1659	17.59	1659	16.93	1659	16.44	1659	16.42	1659	16.37
3880	17.60	3880	16.99	3880	16.70	3880	16.67	3880	16.43
4419	17.71	4419	17.12	4419	16.87	4419	16.84	4419	16.61
4798	17.87	4798	17.30	4798	17.06	4798	17.04	4798	16.84
5370	18.06	5370	17.53	5370	17.31	5370	17.28	5370	17.11
7076	18.50	7076	18.05	7076	17.87	7076	17.84	7076	17.69
8828	18.89	8828	18.54	8798	18.40	8798	18.38	8798	18.24
10888	19.33	10883	19.03	10836	18.92	10836	18.90	10826	18.77
13632	19.76	13591	19.51	13526	19.43	13518	19.40	13504	19.26
17277	20.17	17226	20.00	17147	19.93	17087	19.89	17066	19.71
24533	20.48	24533	20.36	24533	20.31	24533	20.28	24533	20.14
33342	21.01	33342	20.93	33342	20.90	33342	20.88	33342	20.81
39767	21.55	39767	21.51	39767	21.49	39767	21.48	39767	21.45
54555	22.41	54555	22.53	54555	22.34	54555	22.36	54555	22.30

The level in the anabranch can be affected by backwater from Chowilla Regulator, which is modelled with special code:

Special code	Number
Lake Littra backwater	326
Lake Gumflat backwater	327
Lake Limbra backwater	328
Lake Coombool backwater	329
Werta Wert backwater	330

Once flow is converted into level using the relationships above, the river level is compared to lake level for calculating in- and outflows. The level would need to be above the sill level of the lake, for in- or outflow to occur. The flow calculation is based on the inlet capacity (presented in 0) which is defined as:

$$Q = \frac{1}{n} A R^{2/3} S^{1/2} = \frac{1}{n} A R^{2/3} \sqrt{\frac{\Delta h}{L}} = C \sqrt{\Delta h}$$

where Q = flow, n = Manning's roughness coefficient, A = area of offtake channel, R = hydraulic radius, S = water surface gradient, Δh = level difference between offtake point and lake, L = length of channel and C = inlet capacity.

Lake Limbra and Werta Wert wetlands have regulators that can be closed in order to retain water in the Lakes after operations of natural high flows. The regulator status (open or closed) is calculated in Special code. When the regulator is closed the sill level of the lake is increased to the upper operation level of the regulator.

Special code	Number
Limbra regulator status	349
Werta Wert regulator status	350

Weirs

The maximum outflow from Lock 6 and Chowilla regulator is determined based on the Flow-Level relationship downstream of the weir and the target level of the weir. The Flow-Level relationships are presented in tables below.

Lock 6					
Flow (ML/d)	Level (mADH)				
0	11.80				
0	16.20				
1013	16.36				
5474	16.57				
10095	16.88				
14393	17.20				
22460	17.84				
30453	18.41				
38144	18.93				
45051	19.42				
50928	19.80				
53728	20.20				
55880	20.83				
56962	21.46				
70947	22.34				

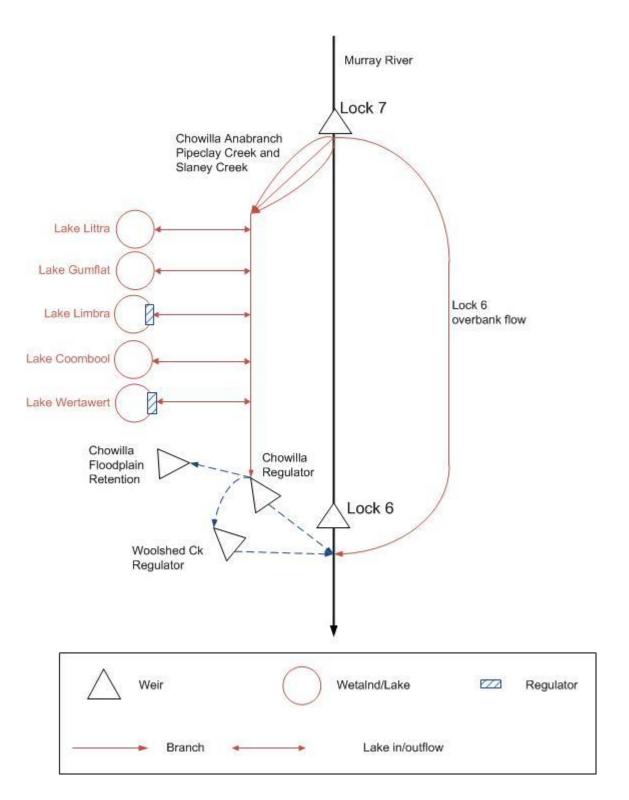
Chowilla Floodplain regulator				
Flow (ML/d)	Level (mADH)			
0	16.20			
1659	16.36			
3817	16.37			
4351	16.53			
4723	16.76			
5280	17.03			
6958	17.61			
8635	18.16			
10403	18.68			
12918	19.16			
16245	19.59			
20272	20.05			
21471	20.77			
22410	21.42			
30510	22.31			

The outflow from Woolshed regulator is not limited by a downstream level, but is driven by the inflow to Woolshed and the target level in the weir calculated in special code.

The target levels are calculated in special code and are based on the operation of the works (i.e. as defined in the operations plan). Target level is set to normal operation level, if the works are not operated.

Special code	Number
Target Level Chowilla Regulator	103
Target Level Lock 6	104
Target Level Woolshed	302

The Chowilla Floodplain Retention weir is used to simulate water retained after flooding. The weir has no outflow and water retained in the weir will evaporate.


	<i>Surface water – loss relationship</i> A standard evaporation loss is applied by MSM–Bigmod with evaporation and rainfall calculated using monthly data from the Lake Victoria climate station and a pan evaporation factor of 0.830. Seepage is assumed to be zero
6.	Details of the measure
	Spatial layers have been produced after operating regime information and updated hydrodynamic model have been used to determine the inundation areas associated with the each of the operating strategies. The total area inundated by the works operation strategies and the areas for each hydrological assessment unit, specified for EO-scoring, are provided in Attachment D.

Attachments

1

Α	MDBA	Chowilla Floodplain representation in Murray model (based on Bigmod Rev 259 and MSM revision 875)
В	MDBA	Proposed operating rules for Chowilla TLM works
С	MDBA	Level-volume-area relationships
D	MDBA	Spatial data describing the inundation extent associated with the operation of the measure

Attachment A - Chowilla Floodplain representation in Murray model (based on Bigmod Rev 259 and MSM revision 875).

	Scenario)		Opera	tions		Duration	ı	Seaso	onality	Inunc	dation		
Name	Minimum Flow to SA (ML/d)	Lock 6 level (m)	Chowilla Regulator Level (m)	Average Frequency of Inundation (years)	Maximum period between operation (years)	Time to raise (days)	Minimum Duration at CR Level (days)	Drawdown time (days)	Earliest Start	Return normal CR level (16.2 mAHD) ^a	Inundated Area (ha)	Flow equivalent to surface water level at Chowilla Creek A4261001 (ML/d)		
In channel Rise	7000	19.25	18	8 in 10	2	13	60	26	3		940	35,000		
Low Floodplain Inundation	10,000	19.65	19	1 in 2	3	23	60	39	Start July	t Start	2717	50,000		
Mid Floodplain Inundation	15,000	19.8 7	19.4	3 in 10	5	27	60	43			and the second	and the second sec	4317	75,000
Max Floodplain Inundation	30,000	19.87	19.8	1 in 5	8	31	30	47			7597	90,000		

Attachment B – Proposed operating rules for Chowilla TLM works

^a Return to normal CR level is based on water level being within channel (ca 18.1 m AHD) at the start of December

LUKES	Lake	littra	
Level	Volume	Area	Inlet
(mADH)	(ML)	(ha)	capacity
18.9	0.0	0.0	0.0
19.0	68.0	58.5	0.0
19.1	130.7	64.7	2.6
19.2	196.6	66.7	6.9
19.3	264.2	68.3	19.3
19.4	336.8	72.3	42.7
19.5	411.4	76.0	78.0
19.6	489.8	80.1	132.9
19.7	572.1	83.9	208.0
19.8	657.9	87.0	429.3
19.9	746.1	89.3	650.6
20.0	836.6	91.3	871.9
20.1	928.8	93.0	1093.2
20.2	1022.7	94.7	1314.5
20.3	1118.3	96.4	1535.7
20.4	1215.7	98.2	1757.0
20.5	1316.1	100.5	1978.3
20.6	1417.6	102.3	2199.6
20.7	1520.7	103.9	2420.9
20.8	1625.4	105.4	2642.2
20.9	1731.6	107.0	2863.5
21.0	1839.9	109.1	3084.8
21.1	1950.0	111.1	3306.0
21.2	2062.2	113.1	3527.3
21.3	2176.4	115.0	3748.6
21.4	2293.9	118.1	3969.9
21.5	2413.8	121.2	4191.2
21.7	2673.2	132.9	4633.8
21.8	2809.1	137.8	4855.0
21.9	2949.5	142.2	5076.3
22.0	3093.2	144.7	5297.6

Attachment C - Level-volume-area relationships

	Lake Gumflat					
Level	Volume	Area	Inlet			
(mADH)	(ML)	(ha)	capacity			
18.5	0.0	0.0	0			
19.0	77.1	26.4	20			
19.1	263.6	141.0	20			
19.2	451.1	208.4	1000			
19.3	719.4	263.5	1000			
19.4	1037.0	300.1	1000			
19.5	1368.4	331.8	1000			
19.6	1713.0	352.4	1000			
19.7	2083.2	371.0	1000			
19.8	2463.5	386.6	1000			
19.9	2858.5	400.7	1000			
20.0	3285.7	414.4	1000			
20.1	3705.5	424.0	1000			
20.2	4152.2	436.5	1000			
20.3	4593.7	444.8	1000			
20.4	5048.2	456.8	1000			
20.5	5509.3	464.4	1000			
20.6	5977.7	471.5	1000			
20.7	6453.3	478.4	1000			
20.8	6934.7	483.8	1000			
20.9	7422.0	489.8	1000			
21.0	7915.2	495.8	1000			
21.1	8414.3	501.7	1000			
21.2	8919.5	508.1	1000			
21.3	9431.7	515.1	1000			
21.4	9950.6	521.6	1000			
21.6	11004.6	531.1	1000			
21.7	11537.6	534.4	1000			
21.8	12073.7	537.4	1000			
22.0	13154.4	542.9	1000			

Lake Limbra					
Level (mADH)	Volume (ML)	Area (ha)	Inlet capacity		
17.60	0	0	0		
18.29	418	215	190		
18.83	2006	354	450		
19.36	4556	512	1400		
19.90	7821	627	1600		
20.10	8252	672	1800		
20.36	10611	711	1800		
20.92	15105	870	1800		
21.51	20604	979	1800		
22.31	29483	1033	1800		
22.50	31417	1033	1800		
23.00	36583	1033	1800		

Lake Werta Wert					
Level	Volume	Area	Inlet cap.		
16.5	0.0	0.0	0.0		
17.0	0.2	0.1	0.0		
17.5	23.8	14.9	0.0		
18.0	150.6	35.8	0.0		
18.4	295.6	46.5	0.0		
18.5	357.7	51.0	36.8		
18.6	438.1	61.8	75.5		
18.6	446.2	62.9	89.7		
18.6	454.2	64.0	115.8		
18.6	462.3	65.1	173.2		
18.6	470.3	66.2	327.4		
18.7	478.4	67.3	537.0		
19.0	759.9	90.0	7872.0		
19.5	1393.9	140.0	18351.0		
20.0	2327.3	212.7	28829.0		
20.5	3494.7	267.4	39308.0		
21.0	4971.9	311.0	49786.0		
21.5	6550.8	318.0	60265.0		
22.0	8149.0	321.2	70743.0		

	Lake Co	ombool	
Level	Volume	Area	Inlet
(mADH)	(ML)	(ha)	capacity
18.2	0.0	0.0	0.0
18.3	121.2	148.2	0.0
18.4	327.8	228.5	0.0
18.5	580.3	263.7	0.0
18.6	857.2	284.4	0.0
18.7	1151.9	300.5	0.0
18.8	1459.0	311.3	0.0
18.9	1775.1	319.4	0.0
19.0	2099.0	327.1	0.0
19.1	2435.4	338.8	0.0
19.2	2781.1	350.3	4.0
19.3	3137.9	361.0	11.0
19.4	3587.8	389.2	18.3
19.5	3985.3	403.4	52.1
19.6	4398.2	419.5	110.3
19.7	4828.8	437.6	200.9
19.8	5280.7	459.4	312.0
19.9	5765.1	482.7	423.0
20.0	6261.5	505.6	534.2
20.1	6922.6	587.9	645.3
20.2	7529.4	619.4	756.3
20.3	8164.9	645.8	867.4
20.4	8823.2	666.7	978.5
20.5	9502.1	687.0	1089.6
20.6	10199.3	704.3	1200.0
20.8	11644.8	739.3	1422.0
21.0	13207.7	810.0	1645.0
21.4	16617.0	884.6	2089.0
21.6	18421.3	914.3	2311.0
22.0	22166.8	953.1	2755.0

Weirs

	Lock 6					
Level (mAHD)	Volume (ML)	Area (ha)				
11.80	0	0				
12.00	539	38				
12.25	643	45				
12.50	765	53				
12.75	910	63				
13.00	1084	76				
13.25	1293	92				
13.50	1546	111				
13.75	1854	137				
14.00	2234	168				
14.25	2688	196				
14.50	3209	221				
14.73	3857	252				
15.00	4635	279				
15.27	5412	306				
15.50	6123	325				
15.75	6953	341				
16.00	7822	356				
16.25	8727	369				
16.50	9663	381				
16.75	10629	393				
17.00	11624	403				
17.25	12640	412				
17.50	13682	423				
17.75	14753	434				
18.00	15850	445				
18.25	16973	454				
18.50	18120	464				
18.75	19293	476				
19.00	20499	491				
19.25	21745	507				
19.45	22770	523				
19.50	23031	527				
19.65	23830	542				
19.75	24375	553				
19.87	25043	570				
20.00	25806	617				

Chowilla Creek Regulator					
Level (mAHD)	Volume (ML)	Area (ha)			
16.2	0	0			
17.0	4240	306			
17.5	6061	426			
18.0	8676	635			
18.5	12433	899			
19.0	18100	1358			
19.1	19582	1500			
19.2	21221	1650			
19.3	23033	1800			
19.4	25081	2000			
19.5	27450	2550			
19.6	30217	2819			
19.7	33395	3117			
19.8	37033	3452			
19.9	41147	3815			
20.0	45775	4204			

Woolshed Creek Regulator						
Level (mADH)	ADH) Volume (ML) Are					
16.2	0	0				
18.6	1600	440				
19.2	2800	570				
19.4	3900	700				
19.6	5300	770				
19.8	7000	930				
19.9	7850	1010				
20.1	8862	1118				
20.8	17350	1125				
21.4	26067	1248				
22.3	38733	1334				

Chowilla Floodplain Retention							
Level (mADH)	Level (mADH) Volume (ML)						
18.0	0	0					
18.1	364	162					
18.7	3303	1035					
19.4	6728	2234					
19.8	9173	2737					
20.1	10500	2918					
20.8	12950	3172					
21.4	14071	3474					
22.0	14286	3474					

In addition to the Level-Volume – Area relationships for the weir pools provided above, the storage and area in the Chowilla Regulator and Lock 6 reaches are affected by flow routing and travel time, based on the tables below. An explanation of the calculation of combined reach and weir storage and area is provided in MDBA Technical Report 2015/15. There is no travel time for Woolshed and Chowilla Floodplain retention, so that storage and area are only defined by the weir pool relationship.

Lock6						
Flow (ML)	Travel Time (days)	Area (ha)				
0	0	0				
1095	0.3	50				
7965	0.1	60				
17119	0.2	70				
25194	0.2	150				
28868	0.2	220				
35562	0.2	420				
46851	0.2	600				
50015	0.2	900				
300000	0.2	5000				

Chowilla Regulator						
Flow (ML)	Travel Time (days)	Area (ha)				
0	0	0				
1641	1.2	270				
1860	1.5	360				
2854	1.8	450				
4617	2	550				
6467	1.5	800				
8687	1.5	870				
10000	1.5	1000				
12403	2	1500				
17681	5	4500				

Attachment D - Spatial data describing the inundation extent associated with the operation of the measure

The area of inundation associated with the operation of the works has been modelled with the hydrodynamic model.

The total area of inundation for each of the four operating strategies is given in the table below. The areas associated with the four operation strategies are nested, i.e. the area inundated when CFP2 is operated includes the area that would be inundated when operating CFP1.

Operation Strategy	Inundation area (ha)
In channel Rise (CFP1)	350
Low Floodplain Inundation (CFP2)	1280
Mid Floodplain Inundation (CFP3)	4560
Max Floodplain Inundation (CFP4)	6158

For the purpose of calculating scaling factors for the Ecological Outcomes scoring method, the maps of the inundation areas associated with the works were combined with maps of SFI flow bands and maps representing the ecological elements used in the scoring method. The areas for the resulting hydrological assessment units (HAU) are provided in tables below. In this case the areas for the works represent the inundation area that is *additional* to the area already inundated by a nested work.

Inundation area (ha) of HAU for CFP1	SFI Flow Bands					
Ecological Element	40,000	60,000	80,000	100,000	125,000	>125,000
General health and abundance - all Waterbirds	194.0	92.0	60.0	4.0	0.0	0.0
Bitterns, crakes and rails	83.0	20.8	14.6	0.3	0.0	0.0
Breeding - Colonial-nesting waterbirds	194.0	92.0	60.0	4.0	0.0	0.0
Breeding - other waterbirds	83.0	20.8	14.6	0.3	0.0	0.0
Redgum Forest	7.0	4.9	2.9	0.1	0.0	0.0
Redgum Woodlands	5.0	4.6	5.6	0.2	0.0	0.0
Forests and Woodlands: Black Box	49.6	23.9	19.8	1.9	0.0	0.0
Lignum (Shrublands)	15.2	9.7	10.5	0.0	0.0	0.0
Tall Grasslands, Sedgelands and Rushlands	83.0	20.8	14.6	0.3	0.0	0.0
Benthic Herblands	0.0	0.0	0.0	0.0	0.0	0.0
Short lived fish	83.0	20.8	14.6	0.3	0.0	0.0
Long lived fish	194.0	92.0	60.0	4.0	0.0	0.0

Inundation area (ha) of HAU for CFP2	SFI Flow Bands					
Ecological Element	40,000	60,000	80,000	100,000	125,000	>125,000
General health and abundance - all Waterbirds	80	606	230	1	5	8
Bitterns, crakes and rails	21	226	66	0	0	0
Breeding - Colonial-nesting waterbirds	80	606	230	1	5	8
Breeding - other waterbirds	21	226	66	0	0	0
Redgum Forest	6	7	1	0	0	0
Redgum Woodlands	9	7	3	0	0	0
Forests and Woodlands: Black Box	28	116	65	1	2	3
Lignum (Shrublands)	12	350	165	0	4	0
Tall Grasslands, Sedgelands and Rushlands	21	226	66	0	0	0
Benthic Herblands	0	0	0	0	0	0
Short lived fish	21	226	66	0	0	0
Long lived fish	80	606	230	1	5	8
Inundation area (ha) of HAU for CFP3	SFI Flow Bands					
Ecological Element	40,000	60,000	80,000	100,000	125,000	>125,000
General health and abundance - all Waterbirds	206	1,403	1,596	37	14	24
Bitterns, crakes and rails	43	138	262	2	0	3

Breeding - Colonial-nesting waterbirds	206	1,403	1,596	37	14	24
Breeding - other waterbirds	43	138	262	2	0	3
Redgum Forest	20	38	6	0	0	0
Redgum Woodlands	35	92	29	1	0	0
Forests and Woodlands: Black Box	68	567	482	9	4	7
Lignum (Shrublands)	23	584	968	21	8	3
Tall Grasslands, Sedgelands and Rushlands	42	131	262	2	0	3
Benthic Herblands	1	7	0	0	0	0
Short lived fish	43	138	262	2	0	3
Long lived fish	206	1,403	1,596	37	14	24

Inundation area (ha) of HAU for CFP4	SFI Flow Bands					
Ecological Element	40,000	60,000	80,000	100,000	125,000	>125,000
General health and abundance - all Waterbirds	36	222	1,304	14	2	20
Bitterns, crakes and rails	7	18	106	3	0	0
Breeding - Colonial-nesting waterbirds	36	222	1,304	14	2	20
Breeding - other waterbirds	7	18	106	3	0	0
Redgum Forest	3	23	2	0	0	0
Redgum Woodlands	13	44	7	0	0	0
Forests and Woodlands: Black Box	11	89	432	7	1	4
Lignum (Shrublands)	1	29	660	2	1	5
Tall Grasslands, Sedgelands and Rushlands	7	18	106	3	0	0
Benthic Herblands	0	0	0	0	0	0
Short lived fish	7	18	106	3	0	0
Long lived fish	36	222	1,304	14	2	20