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Executive summary 

This report summarises progress in the second year of the MD-WERP Project RQ8b: Groundwater 
as an adaptation option to current water resources management in the Murray-Darling Basin 
(MDB). Research continues to focus on the eight main alluvial aquifer systems comprising 22 
resource units that account for 75% of groundwater extraction in the Basin. Four main activities 
are discussed: aquifer resilience, stress and sustainability analysis for the main alluvial aquifers of 
the MDB, b) cluster analysis of groundwater level trends and causal attribution; c) a framework for 
stochastic assessment of managed aquifer recharge (MAR) potential, and d) a framework to assess 
potential evaporative savings realised by using infiltration-based storage compared to surface 
storage. 

Eleven groundwater resource units where potential resilience, stress and sustainability issues, or a 
combination of these, were identified. A comprehensive indicator-based assessment illustrates the 
advantage of analysing these issues simultaneously in the alluvial aquifers of the MDB. This 
assessment highlights the opportunities for groundwater to help improving water management in 
the MDB, anchored on concepts of aquifer resilience, stress, and sustainability by targeting specific 
aspects such as declining groundwater level trends, groundwater salinity, occurrence of 
Groundwater Dependent Ecosystems, among others, at specific groundwater resource units. 

We improved our understanding on the groundwater level trends observed in the alluvial aquifers 
of the MDB by employing clustering techniques (Hierarchical Cluster Analysis, HCA and Self-
Organising Maps, SOMs) to disentangle trend patterns in groundwater levels spatially and 
temporally. Similarly, we employed artificial intelligence/deep learning techniques (recurrent 
neural network) to infer causal attribution to these patterns using a series of covariates such as 
precipitation, potential evaporation, pumping infrastructure, groundwater usage. Results show 
that both clustering techniques identified six dominant patterns with comparable performance, 
thus indicating these patterns are robust and properly identified from the dataset (910 
observations bores). Differences arose in the number of time series allocated to each cluster, 
however a geographical analysis indicated that this was the result of time series within specific 
areas being attributed to closely related patterns. Similarly, the temporal analysis shows the 
impact of the Millennium Drought on declining and recovering patterns post-drought. 

A causal attribution framework based on neural network models is presented to determine the 
main contributors to changes in groundwater level patterns given climate and anthropogenic 
conditions. These models will be probed to determine which driving factors are impacting the 
groundwater level trends the most. It is possible to investigate these attributions temporally as 
well as spatially, to determine if the main factors contributing to altered groundwater levels have 
transformed over the period of study. Improvements to the current data set, and therefore the 
modelling results, could include using rain, PET, and groundwater use information on a local basis 
rather than at the resource unit level. Accessing spatially and temporarily comprehensive data on 
groundwater use will largely determine the quality of the causal inference under anthropogenic 
conditions. 
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The proposed framework for the assessment of MAR potential across the main alluvial resource 
units of the MDB adopts a Monte Carlo approach to capture uncertainties in inputs and assumed 
feasibility thresholds. Preliminary results illustrate the outputs generated with the assessment 
methodology for unconfined aquifer conditions, and methods will be developed for confined 
aquifer conditions. A key input dataset to confined and unconfined assessment is the available 
height for recharge and storage. The study will test the feasibility of using groundwater level trend 
magnitudes generated through other tasks of RQ8b as a basis for interpolation to capture 
temporal dynamics in groundwater levels and avoid assumptions of maximum allowable water 
level rise. The resulting outputs will guide the conceptualisation of potential MAR sites for 
preliminary financial assessment. 

The potential savings that could be realised by using sub-surface storage in suitable locations 
where surface storage may have limited efficiency is explored using a suite of hydrological time 
series calculations. An example for the Namoi region based on the dimensions of Lake Keepit and 
typical farm dam designs compared to infiltration basins with low and high infiltration rates is 
presented. Results indicate significant evaporative savings through MAR compared with 
equivalent surface storage. Evaporation losses reported here should not be interpreted as actual 
potential losses from reservoirs or farm dams under normal operation, as water use is ignored. 
Replicating these calculations across different hydrological and climate zones and for different 
dam and infiltration basin characteristics will provide more insight into where MAR can offer 
potential benefits over equivalent surface storage. 

Activities for the third year of project RQ8b will expand our knowledge on devising and 
implementing a framework to assess MAR economic feasibility as an adaptation option to improve 
groundwater management. This will focus on reducing uncertainty around the costs of MAR at 
different scales and operating conditions. Previous RQ8b activities on aquifer resilience, stress and 
sustainability, in combination with MAR feasibility mapping, will inform one or more conceptual 
MAR site configurations. An existing tool will be used to estimate the range of costs expected to 
implement a conceptual MAR scheme. Policy and regulatory principles needed to enable the 
implementation of a MAR scheme will be discussed depending on the scale and objective of the 
conceptualised scheme and potential ownership and governance arrangements. 
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1 Introduction  

Project RQ8b focuses on using groundwater as an adaptation option for water resource 
management centred on the eight main alluvial aquifer systems comprising 22 resource units that 
account for around 75% of annual groundwater extraction on average (2013-13 to 2018-19) in the 
Basin (MDBA, 2020b). It consists of three one-year activities. In the first year, Activity 8b.1 aimed 
to enhance our knowledge of groundwater level trends, usage patterns, and relevant alluvial 
aquifers in the Murray-Darling Basin (MDB). The primary objective was to identify areas where 
groundwater plays a significant role and discover opportunities for maximising its potential to 
improve economic, social, and environmental outcomes in the MDB. 

In Year 2, Activity 8b.2 builds upon the findings of Year 1 to investigate patterns of temporal and 
spatial clustering in observed groundwater level trends, and to explore the potential factors 
driving such patterns. Additionally, Year 2 activities delve deeper into concepts related to aquifer 
resilience, stress, and sustainability in the alluvial systems of the MDB.  

This report presents a detailed analysis of potential issues related to these concepts, supported by 
twelve metrics calculated at groundwater sustainable diversion limit (SDL) resource unit scale. 
Furthermore, we introduce a Monte Carlo framework to assess managed aquifer recharge (MAR) 
potential in the main alluvial aquifers of the MDB. This framework utilizes variable screening 
thresholds and combines physical features (e.g., alluvial thickness), binary screening of physical 
features, groundwater level trends, and porosity estimates to calculate the likelihood that an 
aquifer can receive a certain infiltration volume while fulfilling specific distance and depth criteria 
from the river or irrigation areas. Lastly, we propose a conceptual framework to evaluate 
evaporation savings when infiltration-based MAR storage is implemented in comparison to 
equivalent surface storage. 

1.1 Scope of RQ8b: Groundwater as an adaptation option to current 
water resources management 

During the second year the scope of activities was twofold: expand and consolidate our 
understanding of spatial and temporal patterns in groundwater level trends in the main alluvial 
aquifers of the MDB and provide foundational analysis of managed aquifer recharge as an 
adaptation option to water resources management in the MDB. During the second year the 
project aimed to: 

• Apply advanced clustering techniques to unravel the patterns observed in groundwater 
levels trends during year 1 activity, 

• Compare clustering techniques in terms of performance and identify spatial and temporal 
patterns in the groundwater level trends, 

• Explore causal attribution to explain patterns in groundwater level trends,  
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• Explore a Monte Carlo framework to assess the MAR potential in the main alluvial aquifers 
of the MDB based on physical features such as alluvial thickness, porosity, depth to 
standing water level trends, clay content, distance to rivers/irrigation areas, 

• Propose a conceptual framework based on simplified water balance calculations to assess 
the evaporation savings due to infiltration-based MAR compared to equivalent surface 
storage.  

Additionally, as legacy task from Year 1 we deepened our understanding on the resilience, stress 
and sustainability of alluvial aquifers by proposing and using an index-based framework 
underpinned by twelve groundwater-related metrics. 

1.2 Groundwater use across the Murray-Darling Basin  

Close to 75% of the groundwater use in the MDB for the period 2012-2019 is concentrated in eight 
alluvial systems (Figure 1), with more recent estimates bringing this value closer to 80%. Within 
each of the main alluvial aquifers, specific groundwater resource units show the following pattern 
in groundwater usage: 

• Condamine (Upper Condamine Alluvium – Central GS64a1, – Tributaries GS64b). For the period 
2012-13 until 2018-19 this alluvial system concentrates on average 43% of the total 
groundwater use metered in SDL resource units of Queensland, with the most recent estimate 
bringing this value close to 50%. If groundwater use in the Upper Condamine Basalts (GS65) is 
also included, the average use amounts to 80% of groundwater use in Queensland. 

• Gwydir (Upper Gwydir, GS43 – Lower Gwydir, GS24). For the period 2012-13 until 2018-19 this 
alluvial system concentrates on average 4% of the total groundwater use metered in SDL 
resource units of New South Wales. 

• Namoi (Upper Namoi, GS47, GS48 – Lower Namoi, GS29). For the period 2012-13 until 2018-19 
this alluvial system concentrates on average 18% of the total groundwater use metered in SDL 
resource units of New South Wales. 

• Macquarie (Upper Macquarie, GS45 – Lower Macquarie, GS26). For the period 2012-13 until 
2018-19 this alluvial system concentrates on average 5% of the total groundwater use metered 
in SDL resource units of New South Wales. 

• Lachlan (Upper Lachlan, GS44 – Lower Lachlan, GS25). For the period 2012-13 until 2018-19 this 
alluvial system concentrates on average 16% of the total groundwater use metered in SDL 
resource units of New South Wales. 

• Murrumbidgee (Lower Murrumbidgee Shallow, GS28a – Lower Murrumbidgee Deep, GS28b – 
Mid-Murrumbidgee, GS31). For the period 2012-13 until 2018-19 this alluvial system 
concentrates on average 29% of the total groundwater use metered in SDL resource units of 
New South Wales. 

 

 
1 This nomenclature corresponds to the 80 Groundwater Sustainable Diversion Limits (SDL) Resource Units reported by the Murray-Darling Basin 
Authority (https://data.gov.au/data/dataset/66e3efa7-fb5c-4bd7-9478-74adb6277955. Accessed on 15-November-2021). 

https://data.gov.au/data/dataset/66e3efa7-fb5c-4bd7-9478-74adb6277955
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• Murray (Lower Murray Shallow, GS27a – Lower Murray Deep, GS27b – Upper Murray, GS46). 
For the period 2012-13 until 2018-19 this alluvial system concentrates on average 8% of the 
total groundwater use metered in SDL resource units of New South Wales. 

• Goulburn-Murray (Shepparton Irrigation Region, GS8a – Sedimentary Plain, GS8c). For the 
period 2012-13 until 2018-19 this alluvial system concentrates on average 88% of the total 
groundwater use metered in SDL resource units of Victoria, with the most recent estimate 
bringing this value to 90%. 

 

 

Figure 1 Main alluvial systems in the Murray-Darling Basin and the corresponding groundwater SDL resource units 
(from https://www.mdba.gov.au/publications/products/groundwater-alluvial-areas-map, accessed 12/11/2021). 
Map includes Border Rivers groundwater resource units for consistency with Barron et al. (2011).  

 

Reported groundwater use in the resource units comprising these major alluvial aquifers and the 
Border Rivers is presented in Table A.1 in the appendix. 

https://www.mdba.gov.au/publications/products/groundwater-alluvial-areas-map
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2 Groundwater resilience, stress and 
sustainability of the alluvial aquifers of the 
Murray-Darling Basin 

This section is based on a research article published in the Journal of Hydrology: Regional Studies: 
Rojas, R., Gonzalez, D. and Fu, G. (2023) Resilience, stress and sustainability of alluvial aquifers in 
the Murray-Darling Basin, Australia: opportunities for groundwater management. Journal of 
Hydrology: Regional Studies, 47, 101419, doi:10.116/j.ejrh.2023.101419. The following sections 
contain a summary of the main methods and results published in this article. 

2.1 Scope 

Research on aquifer vulnerability, sensitivity (Rine et al., 2006; Watson et al., 2020) and potential 
(Mukherjee et al., 2012) has primarily focused on assessing pollution risk and spatial vulnerability 
(Butler, 2010; Rine et al., 2006). However, there has been a growing interest in understanding 
groundwater resources from a systemic lens by exploring concepts such as resilience, stress, and 
sustainability (Akbar et al., 2022; de la Hera-Portillo et al., 2021; Elshall et al., 2020; Gleeson et al., 
2020, 2012; Majidipour et al., 2021; Richey et al., 2015a, 2015b). With few exceptions (e.g. Akbar 
et al., 2022), research has focused mainly on the individual evaluation of these concepts using 
index-based assessment. In this section, we simultaneously explored and applied the concepts of 
groundwater resilience, stress and sustainability in the main alluvial aquifers of the Murray-Darling 
Basin (MDB) to obtain a systemic view of groundwater resources. 

Recent literature reviews show the relevance of the MDB in terms of environmental, 
socioeconomic, hydrological and water management aspects in the last decades (Hart et al., 2020; 
Leblanc et al., 2012; MDBA, 2020a; Ross, 2012; Stewardson et al., 2021; Walker et al., 2020; 
Williams, 2011). However, a regional basin-scale analysis on the main alluvial aquifers of the MDB 
anchored on the concepts of groundwater resilience, stress and sustainability is currently missing. 
To address this issue, we analysed aspects related to long-term groundwater level trends, metered 
groundwater usage, groundwater salinity, storage volumes, recharge rates, aquifers’ buffering 
capacity to absorb changes in recharge rates, and the occurrence and diversity of Groundwater 
Dependent Ecosystems (GDEs). The aim of our work is to provide a systemic overview of the 
alluvial aquifers of the MDB anchored in concepts of groundwater resilience, stress and 
sustainability to identify potential opportunities to improve groundwater management. To achieve 
this, we combine three lines of evidence: a) long-term trend analysis of groundwater levels; (b) 
calculation of the groundwater footprint (GF) considering both volume (Gleeson et al., 2012) and 
quality (salinity) (Kourgialas et al., 2018); and (c) an explicit comparison among groundwater 
resource units aligning with the most recent definition of groundwater sustainability (Elshall et al., 
2020; Gleeson et al., 2020).  
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2.2 Methods 

We embraced the concepts of groundwater resilience, stress and sustainability by merging three 
lines of evidence: a) long-term trend analysis of groundwater levels, b) insights on groundwater 
stress, and c) a systematic comparison among the groundwater resource unit regarding size of the 
resource, groundwater usage, storage, buffering capacity to recharge changes, and the presence 
and diversity of GDEs (Figure 2). Each proxy analysed was assessed using four indicators: 

1. Resilience: mean and maximum groundwater level trends at resource unit scale, number of 
wells showing statistically significant declining trends in groundwater levels, and relative 
groundwater depletion rate defined as the ratio between total storage and change in 
storage from groundwater level trends compared across resource units. 

2. Stress: groundwater footprint/stress based on Gleeson et al. (2012), and integrated 
groundwater footprint/stress based on Kourgialas et al. (2018) for three salinity classes 
(brackish, saline and highly-saline) defined by MDBA (2020a). 

3. Sustainability: development, responsiveness and numerical relevance scores and an 
ordination approach based on Barron et al. (2011) to identify relevant groundwater 
resource unit. 

 

 

Figure 2 Framework anchored in the concepts of aquifer resilience, stress and sustainability and proxies used to 
analyse these concepts (from Rojas et al. (2023)). 

2.2.1 Trends in groundwater levels of alluvial aquifers 

We built upon the long-term trend analysis on groundwater levels for the alluvial aquifers of the 
MDB described in Fu et al. (2022) to frame the analysis around groundwater resilience (de la Hera-
Portillo, 2021). Trends were analysed for 910 observation bores within resource unit areas with at 
least two annual groundwater level measurements in the period 1971-2021 (shown in Figure 1). 
Data on depth to standing water level (DTW) was accessed from the National Groundwater 
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Information System (NGIS) v1.7.0 (updated in July 2021). Out of the 22 groundwater resource 
units analysed (Figure 1), 14 fulfilled the following criterion: at least two measurements per year 
for a 40-year period. Fu et al. (2022) describe the data selection and filtering process in detail 
whereby drilled depth was used to select bores within the estimated thickness of the alluvium and 
separate bores in shallow and deep resource units according to approximate depth thresholds. 
Bore records did not have aquifer attribution so results aggregated at resource unit level may 
contain trends from bores in different layers or zones within resource units. Similar limitations 
exist for all data reported at resource unit level, e.g. extraction limits and actual take.  

Three trend analysis methods, namely, Kendall/Sen’s slope (Hirsch et al., 1982), linear slope, and 
two-period comparison/Innovative Trend Analysis (ITA) (Dong et al., 2020; Şen, 2012) were 
applied on the annual minimum, maximum and average DTW. For details on the trend analysis 
methods the reader is referred to Fu et al. (2022). Basin-scale average long-term trends for DTW 
were obtained for each resource unit and a series of statistics (e.g. mean trends, max trends, no. 
of wells showing statistically significant trends, groundwater depletion rate) were calculated to 
identify a subset of resource units showing groundwater resilience issues.  

2.2.2 Groundwater Footprint/Stress 

The groundwater footprint (GF) was calculated as (Gleeson et al., 2012): 

𝐺𝐺𝐺𝐺 = 𝐴𝐴 � 𝐶𝐶
(𝑅𝑅−𝐸𝐸)�          [1] 

where A is the areal extent of the region of interest (e.g. aquifer management area) (L2), C is the 
annual groundwater abstraction/use (L3/T), R is the annual recharge rate (L3/T), and E is the 
groundwater contribution to environmental streamflow (L3/T). Gleeson et al. (2012) and Mahdavi 
(2021) suggest alternative ways to calculate E, for example, hydro-ecological studies, direct 
measurements of springs, hydrological modelling results, expert elicitation/judgement, expressed 
as a fraction of recharge, or as a low-flow statistic, e.g., Q95, Q90/Qavg, as defined by Smakhtin et 
al. (2004). Groundwater contribution to environmental streamflow (E) was obtained from either: 
(1) available modelling results (MDBA, 2020a); (2) reports describing groundwater contributions to 
streamflow (NSW-DPIE, 2019a; NSW-DPIE, 2019b; Welsh et al., 2014); (3) or by estimating the 
Q95, Q90/Qavg statistics from representative gauging stations. For the latter we used a spatial 
dataset describing the groundwater-surface interactions to identify river reaches and suitable 
gauging stations where contributions from groundwater to streamflow are expected in 
Shepparton Irrigation Region (GS8a) and Goulburn Sedimentary Plain (GS8c) (VIC-DELWP, 2020) 
(see Figure 1).  

2.2.2.1 Salinity and groundwater stress 

We included groundwater quality aspects using a revised version of the groundwater footprint 
proposed by Kourgialas et al. (2018) and defined as: 

𝑖𝑖𝐺𝐺𝐺𝐺 = 𝐺𝐺𝐺𝐺 ×  �1 + 𝑛𝑛 �𝐶𝐶𝐺𝐺1
𝐴𝐴1
𝐴𝐴

+ 𝐶𝐶𝐺𝐺2
𝐴𝐴2
𝐴𝐴

+ ⋯+ 𝐶𝐶𝐺𝐺𝑛𝑛
𝐴𝐴𝑛𝑛
𝐴𝐴
��      [2] 

where, GF is the groundwater footprint as defined in equation [1], n is the number of 
contaminants in the aquifer system, CF1...n is a factor for contaminant (j), with j=1,…,n, with CFj 
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equal to 1 if the contaminant is present or above a threshold and zero otherwise, A1...n is the 
extent of the contaminated area, and A is the areal extent of the region of interest. 

We used groundwater salinity data from 12,513 observation bores from the NGIS to calculate iGF 
in the 22 groundwater resource units analysed (Table 1). Upper and lower two percent of salinity 
data were removed to filter out extreme values. From the remaining data, the 95th percentile 
salinity value was calculated for each bore for use in spatial interpolation. There were no salinity 
data in the Upper Gwydir GS43, sparse in the Lower Murrumbidgee Shallow Alluvium GS28a, and 
poorly distributed across the Lower Murray Shallow Alluvium GS27a. These groundwater resource 
units were therefore excluded from spatial interpolation. Interpolation across the Border Rivers 
resource units included 36 bores in total although were unevenly distributed. A range of kriging 
interpolation model and parameter combinations were tested to create prediction surfaces of 
salinity. Model fit was assessed using cross-validation. The semi-variogram model and parameter 
combination that minimised root-mean-square error (RMSE) was selected. A separate kriging 
model was applied in the Shepparton Irrigation Region (SIR) (GS8a) as it overlaps and has variable 
hydraulic connection with the underlying Sedimentary Plain (GS8c).  

Table 1 Salinity data summary for SDL resource units and kriging model performance 

SDL resource unit  Code 
No. 
bores 

Area km2 
p95 min 
(µS/cm) 

p95 max 
(µS/cm) 

Kriging 
model 

Range 
(km) 

RMSE 
(µS/cm) 

Goulburn-Murray: SP GS8c 1760 21928.92 260 35213 Circular 20.4 4464 

Goulburn-Murray: SIR GS8a 10800 6579.87 255 35244 K-Bessell 5.1 4893 

Lower Gwydir Alluvium GS24 121 2340.39 280 6168 Circular 20.4 4464 

Lower Lachlan Alluvium GS25 95 25282.63 265 32425 Circular 20.4 4464 

Lower Macquarie Alluvium GS26 92 3960.96 302 33325 Circular 20.4 4464 

Lower Murray Deep Alluvium GS27b 73 17803.16 280 31135 Circular 20.4 4464 

Lower Murray Shallow Alluvium GS27a 61 17803.16 278 35100 na na na 

Lower Murrumbidgee Deep Alluvium GS28b 90 32437.91 260 15046 Circular 20.4 4464 

Lower Murrumbidgee Shallow Alluvium GS28a 5 32437.91 298 3337 na na na 

Lower Namoi Alluvium GS29 227 7115.07 291 29700 Circular 20.4 4464 

Mid-Murrumbidgee Alluvium GS31 142 1472.68 263 13920 Circular 20.4 4464 

NSW Border Rivers Alluvium GS32 8 365.98 320 2097 Circular 20.4 4464 

NSW Border Rivers Tributary Alluvium GS33 3 248.62 632 1028 Circular 20.4 4464 

Queensland Border Rivers Alluvium GS54 25 25282.63 439 5306 Circular 20.4 4464 

Upper Condamine Alluvium (CCA) GS64a 148 4346.05 486 25061 Circular 20.4 4464 

Upper Condamine Alluvium (Trib.) GS64b 78 3777.73 517 25350 Circular 20.4 4464 

Upper Gwydir Alluvium GS43 0 97.37 Na Na na na na 

Upper Lachlan Alluvium GS44 138 12962.72 294 30775 Circular 20.4 4464 

Upper Macquarie Alluvium GS45 51 273.17 262 23990 Circular 20.4 4464 

Upper Murray Alluvium GS46 13 489.42 666 2675 Circular 20.4 4464 

Upper Namoi Alluvium GS47 337 3573.04 267 23700 Circular 20.4 4464 

Upper Namoi Tributary Alluvium GS48 6 56.36 878 1428 Circular 20.4 4464 

Continuous predicted values were contoured into salinity classes TDS (mg/L) following the 
Recharge Risk Assessment Method (RRAM) described in MDBA (2020): 1) fresh <1500 mg/L, 2) 
brackish 1500–3000 mg/L, 3) saline 3000–14,000 mg/L, and 4) highly saline >14,000 mg/L. The 
total areas of these salinity classes within each groundwater resource unit were used as inputs to 
calculate iGF in equation 2. 
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The ratio of both GF and iGF by the resource unit is interpreted as a groundwater stress metric, 
with GF/A >1 and iGF/A > 1 indicating unsustainable consumption of groundwater resources 
(Kourgialas et al., 2018). 

2.2.3 Aquifer development and responsiveness 

In this work, we embraced the idea by Elshall et al. (2020) suggesting that sustainability should be 
assessed from both aquifer performance and management perspectives. To achieve this, we 
employed modified versions of indicators reflecting aquifer development and responsiveness 
proposed by Barron et al. (2011) and Currie et al. (2010). These indicators compare different 
aspects such as storage volumes, current and allowable groundwater use, recharge rates, 
occurrence and diversity of GDEs, and buffering capacity (storage proportional to recharge), across 
groundwater resource units. The indicators proposed are defined as follows: 

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑛𝑛𝐷𝐷 𝑆𝑆𝐷𝐷𝑆𝑆𝑖𝑖 = 𝐷𝐷𝑖𝑖 = 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐺𝐺𝐺𝐺 𝑈𝑈𝑈𝑈𝑈𝑈𝑖𝑖
𝑀𝑀𝐴𝐴𝑀𝑀(𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐺𝐺𝐺𝐺 𝑈𝑈𝑈𝑈𝑈𝑈𝑖𝑖∶ 𝑖𝑖=1,…,𝑛𝑛)

∗ 𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖
𝑀𝑀𝐴𝐴𝑀𝑀(𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖∶ 𝑖𝑖=1,…,𝑛𝑛)

∗ 𝑓𝑓(𝐺𝐺𝐷𝐷𝐺𝐺)𝑖𝑖  [1] 

𝑅𝑅𝐷𝐷𝑅𝑅𝐷𝐷𝐷𝐷𝑛𝑛𝑅𝑅𝑖𝑖𝐷𝐷𝐷𝐷𝑛𝑛𝐷𝐷𝑅𝑅𝑅𝑅 𝑆𝑆𝐷𝐷𝑆𝑆𝑖𝑖 =  𝑅𝑅𝐷𝐷𝑖𝑖 = 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐺𝐺𝐺𝐺 𝑈𝑈𝑈𝑈𝑈𝑈𝑖𝑖
𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖

∗ 𝑓𝑓(𝑅𝑅: 𝑆𝑆)𝑖𝑖     [2] 

where i, i=1,…,22 is the i-th groundwater resource unit, n=22 is the total number of SDL resource 
units, Actual GW Usei (ML/y) represents metered groundwater usage reported for the period 
2012-2019 for the i-th groundwater resource unit, SDLi represents the long-term average 
groundwater sustainable diversion limit (ML/y) associated with i-th resource unit, f(GDE)i 
represents a factor accounting for GDE presence and diversity in the i-th SDL, and  f(R:S)i is a factor 
reflecting the buffering capacity to absorb changes in recharge rates (R) with respect to storage 
capacity (S) of the i-th resource unit.  

Both indicators can be combined to obtain a numerical ranking following the standardization 
process described in Barron et al. (2011). Additionally, we employed an ordination approach 
(Barron et al., 2011) to rank groundwater resource units as follows: developed aquifer systems 
(low responsiveness and high development scores); responsive aquifer systems (low development 
and high responsiveness scores); and relevant aquifer systems (high development and high 
responsiveness scores). 

In this work, we improved on the calculation of f(GDE)i in equation 1 by using the latest spatial 
data available from the GDE Atlas (v.2019) published by the Australian Bureau of Meteorology 
(BoM) (http://www.bom.gov.au/water/groundwater/gde/). The GDE Atlas contains spatial 
information on aspects such as GDE potential (unknown-low-moderate-high potential of 
interacting with groundwater), GDE ecotypes, eco-hydrogeological zones, and specific areal 
extents. This information was used to refine the f(GDE)i factor to obtain a more robust and 
representative index. To achieve this, we grouped aquatic GDEs based on ecotype (wetland, river, 
spring) and eco-hydrogeological zone resulting in 26 classes for aquatic GDEs. Terrestrial GDEs 
(one vegetation ecotype class) were grouped according to sub-ecotype resulting in 476 classes. 
We then adapted two widely used diversity indices, namely, Shannon and Simpson Diversity 
Indices (Gorelick, 2006; Spellerberg & Fedor, 2003) to use class areas instead of species counts 
within each groundwater resource unit. These diversity indices were calculated on filtered GDE 
data to exclude areas defined as ‘low’ or ‘unknown’ GDE potential for connection to groundwater 

http://www.bom.gov.au/water/groundwater/gde/
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and were weighted by the ratio between GDE area and total resource unit (AreaGDE/AreaSDL) to 
account for the spatial relevance of GDEs.  

The factor f(R:S)i is expressed as a membership function as follows: 

𝑓𝑓(𝑅𝑅: 𝑆𝑆) = �
0.9
0.3

0.01  

   ℎ𝑖𝑖𝑖𝑖ℎ 𝑅𝑅: 𝑆𝑆
   𝐷𝐷𝐷𝐷𝑚𝑚𝐷𝐷𝑚𝑚𝑚𝑚𝐷𝐷𝐷𝐷 𝑅𝑅: 𝑆𝑆
   𝐷𝐷𝐷𝐷𝑙𝑙 𝑅𝑅: 𝑆𝑆

         [3] 

To define the three classes (high, moderate and low R:S ratios), we used recharge estimates 
reported in the literature and average values of standing water levels, aquifer base level, planar 
areas, aquifer types, and estimates of porosity for storage calculations mostly from background 
documentation of Water Sharing Plans (WSP) (MDBA, 2020; DNRME, 2018; McNeil et al., 2018; 
MDBA, 2020; OGIA, 2016; Water, 2015; Welsh et al., 2014). For the groundwater resource units in 
Queensland and Victoria, we used the depth of regolith digital product (Wilford et al., 2018). 

2.3 Results 

Table 2 shows the statistics obtained from the trend analysis for 14 groundwater resource units 
with available data. Grey cells indicate those resource units where the (mean or maximum) 
groundwater level trend for the period 1971/2021 is above average across all resource units (0.11 
and 0.43 m/y, respectively), or where the number of observation bores showing statistically 
significant decreases in DTW is greater than 80%. Except for Lower Gwydir Alluvium, all resource 
units show a high proportion (> 80%) of observation bores with statistically significant decreasing 
trends in DTW.  

Table 2 Groundwater level trend magnitudes (m/y) per SDL resource unit based on Beta value estimate (Hirsch et 
al., 1982; Kendall, 1975) for the mean and maximum annual DTW, number of bores showing statistically significant 
decreasing trends (adapted from Rojas et al. (2023)). 

SDL 
Code 

SDL Resource Units Area 
Km2 

No. of wells Mean 
Trend 
(m/y) 

Max 
Trend 
(m/y) 

Stat. sig. wells 
showing decreasing trend 

GS29 Lower Namoi Alluvium 7115 155 0.19 0.68 98% 
GS28b Lower Murrumbidgee Deep Alluvium 32438 36 0.18 0.50 81% 
GS47 Upper Namoi Alluvium  3573 174 0.16 0.53 95% 
GS8c Goulburn-Murray: SP 21929 55 0.15 0.59 100% 
GS64a Upper Condamine Alluvium (CCA) 4346 74 0.12 0.48 91% 
GS24 Lower Gwydir Alluvium 2340 48 0.12 0.35 73% 
GS31 Mid-Murrumbidgee Alluvium 1473 90 0.12 0.35 100% 
GS44 Upper Lachlan Alluvium 12963 56 0.11 0.42 100% 
GS27b Lower Murray Deep Alluvium 17803 4 0.11 0.36 75% 
GS25 Lower Lachlan Alluvium 25283 31 0.10 0.33 84% 
GS64b Upper Condamine Alluvium (Tributaries)  3778 73 0.06 1.01 93% 
GS28a Lower Murrumbidgee Shallow Alluvium  32438 12 0.03 0.09 67% 
GS46 Upper Murray Alluvium 489 6 0.05 0.16 83% 
GS8a Goulburn-Murray: SIR 6580 96 0.04 0.21 89% 

 

It is worth noting that the depletion rate is determined by considering the ratio of storage volume 
and the change in storage volume. Absolute values for the depletion rates are therefore only 
referential. To comparatively assess groundwater resource units in the following sections, we 
focus on the normalised values of the depletion rate (see section 2.4, Figure 6). 
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In Figure 3, the 95th percentile salinity values across all resource units are spatially interpolated, 
along with the corresponding salinity class areas that were used to calculate iGF. Most of the 
groundwater SDL resource units covering alluvial aquifers are classified as freshwater (54%) or 
brackish (18%) groundwater, while 25% are classified as saline. Highly saline areas are identified in 
specific regions, such as the lower sections of the Murray River in the Sedimentary Plain (GS8c), 
Lower Murray Deep (GS27b), and a localized area of the Shepparton Irrigation Region (GS8a). 
Figure 3 also indicates that most of the freshwater areas (>80% of the total SDL resource unit) are 
concentrated around the narrow alluvial deposits located towards the uplands of the MDB and in 
the Lower Gwydir Alluvium (GS24). In the Condamine Alluvium (GS64a), fresh groundwater aligns 
well with the Condamine River. Similarly, alluvial aquifers in the MDB's extensive alluvial plains 
show freshwater pockets closely aligned with the main rivers of these regions, such as Lachlan 
(GS25), Murrumbidgee (GS31 and GS28b), and Lower Murray Deep Alluvium (GS27b). This would 
suggest strong connections between surface water and groundwater for these alluvial aquifers. 
Brackish and saline groundwater regions are prevalent in the lower sections of the SDL resource 
units, such as Lower Namoi (GS29), Lower Murrumbidgee Deep (GS28b), Lower Murray Deep 
(GS27b), and Goulburn-Murray Sedimentary Plain (GS8c). 

The iGF metric uses lateral extents of salinity classes for the calculation of stress levels at SDL 
resource unit scale. Groundwater salinity values may vary with depth however, this was not 
accounted for in the spatial interpolation beyond separating deep and shallow SDL resource units 
based on observation bore drilled depth. 

Figure 4 illustrates the distribution of groundwater stress metric (GF/A) at the resource unit scale. 
The first panel (Figure 4a) represents the stress metric without considering the salinity data, which 
serves as a baseline for comparison. This figure assumes that all areas contribute to the calculation 
of the stress metric. The second panel (Figure 4b) considers areas with high salinity, including 
Shepparton Irrigation Region (GS8a), Goulburn-Murray Sedimentary Plain (GS8c), and Lower 
Murray Deep (GS27b), to calculate iGF. However, these areas do not significantly affect the 
groundwater stress metric (iGF/A) to values higher than one, and no changes are observed 
compared to the baseline (Figure 4a). The third panel (Figure 4c) considers highly saline and saline 
groundwater areas to calculate iGF. Both Lower Lachlan Alluvium (GS25) and Lower 
Murrumbidgee Deep Alluvium (GS28b) experience stress conditions (iGF/A > 1) due to the increase 
in areas falling under this salinity class (57% and 48% of total SDL resource unit, respectively). At 
the same time, Lower Gwydir Alluvium (GS24), Lower Macquarie Alluvium (GS26), and Goulburn-
Murray Sedimentary Plain (GS8c) show iGF/A values greater than 0.8. Finally, Figure 4d includes 
areas with highly saline, saline, and brackish groundwater. Several resource units indicating 
groundwater stress are included: Lower Macquarie Alluvium (GS26), Upper Condamine Alluvium 
(GS64a), Upper Condamine Alluvium Tributaries (GS64b), and Goulburn-Murray Sedimentary Plain 
(GS8c). It is worth noting that the Shepparton Irrigation Region (GS8a) is not experiencing stress 
levels due to its low groundwater use, significant recharge, and the area considered in the GF 
calculation. 
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Figure 3 Salinity contours interpolated from 95th percentile observation bore data for (a) the main alluvial SDL 
resource units, and (b) inset showing the Goulburn-Murray: Shepparton Irrigation Region (SIR) (GS8a) that overlies 
the Goulburn-Murray: Sedimentary Plain (SP) (GS8c); contours were used for calculation of the groundwater stress 
index (iGF) (from Rojas et al. (2023)). 
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Figure 4 Groundwater stress indices for groundwater SDL resource units considering (a) groundwater use only 
(GF/A) and different salinity classes (iGF/A): (b) highly saline, (c) highly saline and saline, and (d) highly saline, saline 
and brackish as defined by MDBA (2020) (from Rojas et al. (2023)). 

When including different salinity class areas in the calculation of the GF, we observe important 
increases in stress levels (iGF in Figure 4c and 4d). For example, for groundwater resource units 
initially identified: Lower Namoi, Upper Macquarie, Upper Namoi (GS29, GS45 and GS47); stress 
levels increase between 60% and 160%, whereas for Lower Lachlan (GS25), a 3.4-fold increase in 
stress level is observed. Similarly, when using freshwater areas only in the calculation of 
groundwater stress, i.e., discounting highly saline, saline and brackish groundwater areas in the 
alluvial aquifers, other groundwater resource units are identified under stress, namely, Lower 
Macquarie (GS26); Lower Murrumbidgee Deep (GS28b); Upper Condamine Alluvium (GS64a and 
GS64b), and Goulburn-Murray Sedimentary Plain (GS8c)—the latter showing the largest (3.4-fold) 
increase in the stress metric. 
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Figure 5 shows the scores for development, responsiveness, and numerical relevance using 
different weighting schemes for the Simpson's diversity index (SDI). These results are similar to 
Shannon's diversity index, which is not included here. One interesting observation is that changes 
in f(GDE) only affect the development and numerical relevance scores, not the responsiveness 
score. When the Simpson's diversity index is weighted by the GDE area (D vs DA) or the moderate-
to-high potential GDE area (DA vs DAf) to calculate f(GDE), we notice discrepancies in the 
development score for certain groundwater resource units (e.g. Sedimentary Plain GS8c, Upper 
Condamine GS64a, GS64b, Lower Gwydir GS24). This is expected since these resource units have 
less than 8% of the total area defined as GDEs. Similarly, when the diversity index is weighted by 
the GDE areas of moderate-to-high potential, Lower Lachlan, Sedimentary Plain, Shepparton 
Irrigation Region and Lower Macquarie (GS25, GS8c, GS8a, and GS26) show the largest 
fluctuations in the development score. Sensitivities in the numerical relevance score (indicated by 
symbol size in Figure 5) however are less significant, which suggests that the values are robust. 

  

  
Figure 5 Development, responsiveness and numerical relevance scores for groundwater SDL resource units using 
(a) Simpson Diversity Index (SDI) (D), (b) area-weighted SDI (DA), (c) SDI using moderate to high GDE potential areas 
(Df), and (d) area-weighted SDI using moderate-to-high GDE potential areas (DAf). Bubble size reflects numerical 
relevance (see Appendix A) - small bubbles reflecting high numerical scores and vice versa (from Rojas et al. (2023)). 

In Figure 5, the coloured regions in the panels represent the ordination approach. The blue region 
shows high development and low responsiveness scores, while the green region represents high 
responsiveness and low development scores. The yellow region reflects high development and 
high responsiveness scores. To determine the coloured regions of the ordination approach, we 
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established the top 10 (out of 22) groundwater resource units as cut-off values following Barron et 
al. (2011). The Upper Macquarie (GS45) exhibits a high responsiveness score due to its high f(R:S) 
factor (0.9) and average annual groundwater use (16,643 ML/y) approaching the sustainable 
diversion limit value of 17,900 ML/y. On the other hand, the Goulburn-Murray: Sedimentary Plain 
(GS8c) and the Shepparton Irrigation Region (GS8a) show high development scores. However, 
when the diversity index (D) is weighted by GDE area (DA), Lower Lachlan (GS25) ranks first, 
followed by Upper Namoi (GS47). This is because of the high ratio of groundwater extraction of 
Lower Lachlan GS25 and Upper Namoi GS47 compared to the largest groundwater extraction 
across all groundwater resource units and the changes in f(GDE) observed in GS8a and GS8c when 
weighting the diversity index by GDE area. It is worth noting that the groundwater resource units 
located in the blue region are the ones that hold the highest numerical relevance score, as 
indicated by their bubble size. In contrast, those found in the green region with high 
responsiveness scores have little impact on the numerical relevance score. Therefore, it is the 
development score that significantly influences the numerical relevance score. However, it is 
important to mention that some groundwater resource units with a high numerical relevance 
score (small bubble size) may not necessarily fall within the yellow area defined by the ordination 
approach. 

Based on the ordination approach, two groundwater resource units (Shepparton Irrigation Region 
and Mid-Murrumbidgee Alluvium) consistently displayed high development and responsiveness 
scores across various weighting schemes as demonstrated in Figure 5. In the case of Shepparton 
Irrigation Region (GS8a), this is primarily due to the ratio between SDLGS8a (244,100 ML/y) and 
SDLMax (GS28b, 273,600 ML/y) used in the calculation of the development score (equation 1). This 
ratio signifies the proportion of the sustainable exploitable resource in Shepparton Irrigation 
Region compared to the largest unit in the dataset (Lower Murrumbidgee Deep Alluvium GS28b). 
It is important to note that the average groundwater use measured in Shepparton Irrigation 
Region from 2012 to 2019 represents only 23% of its sustainable diversion limit (SDLGS8a = 244,100 
ML/y). On the other hand, for Mid-Murrumbidgee, the high scores are mainly attributed to the 
ratio between the metered groundwater use from 2012 to 2019 (38,957 ML/y) and the SDL 
(53,500 ML/y) used in computing the responsiveness score (equation 2), along with a moderate 
R:S ratio. 

2.4 Aspects of resilience, stress and sustainability of alluvial aquifers 
of the MDB 

To analyse the resilience, stress, and sustainability of groundwater, standardized indicators are 
used as proxies. Figure 6 summarises the standardised groundwater-based indicators used as 
proxies for analysing groundwater resilience, stress and sustainability aspects. Results show eleven 
groundwater resource units where resilience, stress or sustainability issues have been identified: 
Lower Gwydir Alluvium (GS24), Lower Lachlan Alluvium (GS25), Lower Murrumbidgee Deep 
Alluvium (GS28b), Lower Namoi Alluvium (GS29), Mid-Murrumbidgee Alluvium (GS31), Upper 
Lachlan Alluvium (GS44), Upper Macquarie Alluvium (GS45), Upper Namoi Alluvium (GS47), Upper 
Condamine Alluvium (CCA) (GS64a), Goulburn-Murray: Shepparton Irrigation Region (GS8a) and 
Goulburn-Murray: Sedimentary Plain (GS8c). Out of these groundwater resource units, evidence 
indicates that stress, resilience and potential sustainability issues are simultaneously identified for 
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the Namoi alluvial aquifer (comprising GS29 and GS47). In contrast, the Mid-Murrumbidgee 
alluvial aquifer (GS31) shows resilience and sustainability issues. For the case of the Upper 
Condamine Alluvium (GS64a), Lower Murrumbidgee Deep (GS28b) as well as the Goulburn-
Murray: Sedimentary Plain (GS8c), evidence suggests groundwater management units experience 
resilience issues due to declining groundwater levels and high depletion rates, potential stress 
issues when considering salinity levels in groundwater stress calculations, and potential 
sustainability issues when presence and diversity of GDEs are considered. Upper Macquarie (GS45) 
shows stress issues mainly driven by the reported contribution from groundwater to streamflow 
(MDBA, 2020). In contrast, Upper Lachlan (GS44) shows resilience issues driven by the number of 
wells showing statistically significant declining trends and high depletion rates, and potential 
sustainability issues driven by the aquifer development score. A similar pattern is observed for 
GS8a but with strong evidence from the development score (and ordination approach), indicating 
sustainability issues. Lower Gwydir (GS24) and Lower Lachlan (GS25) show above-average values 
for all indicators (across all resource units) used as proxies to analyse resilience, stress and 
sustainability. Except for lower Lachlan (GS25) stress issues when considering groundwater 
salinity, all other indicators are similar for these two groundwater resource units, thus indicating 
no clear evidence of specific resilience, stress or sustainability issues. 

 

Figure 6 Heatmap representing standardised groundwater indicators of resilience, stress and sustainability for 
groundwater resource units used to manage the main alluvial aquifer systems in the MDB. iGF(HS): highly saline 
areas; iGF(HS+S): highly saline and saline areas; iGF(HS+S+B): highly saline, saline and brackish areas. Solid line 
boxes identify resource units where normalised groundwater indicators for resilience, stress or sustainability are 
above average. Dashed line boxes identify two resource units where groundwater indicators indicate emergent 
issues (from Rojas et al. (2023)). 

Similarly, emerging stress and sustainability issues have been identified for Lower Macquarie 
Alluvium (GS26) when groundwater salinity and the occurrence and diversity of GDEs are 
considered. In contrast, for the Upper Condamine Alluvium (Tributaries) (GS64b), potential 
resilience issues have been identified (localised highest maximum trend values across resource 
units). 
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3 Cluster analysis of groundwater level trends 
and causal attribution 

This section pertains to a research article that is currently being prepared for submission to a peer-
reviewed journal. Its focus is on examining the spatial and temporal patterns of groundwater 
levels at the SDL scale in the main alluvial aquifers of the MDB (as shown in Figure 1). The article 
compares alternative techniques (i.e., hierarchical clustering analysis and unsupervised clustering 
through self-organising maps), analyses spatial clusters in these trends, and assesses the potential 
impact of the Millennium Drought on groundwater levels across the main alluvial aquifers. 
Additionally, it delves into aspects of causal attribution to better understand the driving factors 
behind these patterns in groundwater levels. The following sections provide a summary of the 
methods and results presented in this article. 

3.1 Scope 

For most of the alluvial aquifers of the MDB, a dominant decreasing trend was observed for the 
groundwater levels, whereas over a reduced number of observation bores an increasing trend was 
probably reflecting local conditions associated to aquifer confinement or localised recharge due to 
flooding or irrigation (Figure 7). These dominant trends are more pronounced in specific 
groundwater resource units. Similarly, the number of observed DTW records to build these trends 
varies substantially among resource units and as such the confidence in the estimated trends. For 
example, Lower Murray Deep Alluvium (GS27b) has only four observation bores (Table 2) fulfilling 
the selection data criteria, i.e., at least two record per year for a 40-year period, which is reflected 
in the reduced number of records to fit the trend in Figure 7. 

We improved the understanding on these groundwater level trends by performing cluster analysis 
to untangle the dominant spatial and temporal patterns observed in these trends. Important 
questions addressed were: What are the dominant patterns in groundwater level trends? How 
robust are these patterns to different clustering techniques? What is the performance of these 
clustering techniques? Is there a spatial configuration for these patterns? What is the impact of 
the Millennium Drought on these patterns? 

In this section we discuss and apply two clustering techniques to analyse the dominant patterns in 
the groundwater level trends: hierarchical and unsupervised clustering. The latter is implemented 
through the self-organising map (SOM) algorithm (Kohonen, 1990). Both clustering techniques are 
further compared in terms of numerical performance, and the main dominant clusters in the 
trends are identified. Dominant clusters are further analysed in spatial terms and the impact of the 
Millennium Drought on the dominant patterns is analysed. 
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Figure 7 Standardized groundwater level trends for each groundwater SDL obtained from 910 observation bores. 
Light grey dots represent recorded values for depth to standing water level (DTW). 

3.2 Hierarchical clustering 

Hierarchical clustering, also called hierarchical cluster analysis (HCA), is an algorithm that seeks to 
build a hierarchy of groups or clusters so that each cluster is distinctive from other clusters but the 
elements within the same cluster are broadly similar. The results of hierarchical clustering can be 
presented as a dendrogram, which is a diagram with a tree structure representing the hierarchical 
relationship between elements (Nielsen, 2016). To determine which cluster, the individual 
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element belongs to, a metric is needed to measure the distance between this element and other 
elements and clusters. The Euclidean distance is the most popular choice and is used in this study 
(Nielsen, 2016). 

Figure 8 is the dendrogram of the depth to standing water level (DTW) with 910 bores used in this 
study. The six clusters/groups are chosen for this study based on the distances among them and 
their temporal patterns (Figure 9). A large proportion of the trends in the observation bores fall 
within two dominant clusters (Clusters 1 and 2). 

 

Figure 8 Dendrogram of depth to standing water level (DTW) from 910 bores (6 groups/clusters). 

 

Figure 9 shows the temporal variations of the mean values of the standardized DTW from the six 
clusters. The vertical blue dashed lines represent the Millennium Drought period in 1997–2009, a 
severe and prolonged dry period in southeast Australia. The rainfall, streamflow, groundwater 
level and storage, wetland, lakes and their relationships have changed significantly, before, during 
and after the Millennium Drought (Fu et al., 2023). Each cluster displays a unique temporal pattern 
of DTW: 1) There are 454 (about 50%) of groundwater bores in Cluster 1 (C1 in Figure 8), which 
show a continuous decreasing of groundwater level during 1971–2019, i.e., before and during the 
Millennium Drought periods (Figure 9). However, the groundwater level is relatively stable after 
the drought. The 2011–2012 wet years can also be observed; 2) There are 236 (about 26%) of 
groundwater bores in Cluster 2 (C2 in Figure 8), which show a stable groundwater level in 1971–
1996 before drought period, but a decreasing trend during and after the drought periods (Figure 
9). The 2011–2012 wet years can also be observed in this cluster; 3) There are 62 (about 7%) of 
groundwater bores in Cluster 3 (C3 in Figure 8), which show a significant decreasing trend of 
groundwater level in 1971–1996 before drought period, but relatively stable during and after the 
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drought periods; 4) There are 65 (about 7%) of groundwater bores in Cluster 4 (C4 in Figure 8), 
which show an overall decreasing trend of groundwater level for the entire study period. 
However, it shows the greatest fluctuation, implying the sensitivity of groundwater level to rainfall 
anomaly (Figure 9). The 2011–2012 wet years lead to the biggest jump of groundwater level in this 
cluster; 5) There are 53 (about 6%) groundwater bores in Cluster 5 (C5 in Figure 8), which show an 
increasing trend of groundwater level in 1971–1996 before the drought period, but a decreasing 
trend during and after the drought periods (Figure 9). The increasing trend in 1971–1996 should 
be the result of human activity, such as irrigation, and the significant decreasing trend during the 
drought period should be a result of drought events; 6) There are 40 (about 4%) of groundwater 
bores in Cluster 6 (C6 in Figure 8), which show the similar increasing trend of groundwater level as 
Cluster 5, but relatively stable of groundwater level during and after the drought (Figure 9). The 
underlying physical processes could be a mixed impact of human activity and climate change, i.e., 
the effects of dry climate are offset by human activity. 

 

 

Figure 9 Time series of mean standardized DTW from six clusters (vertical blue dash lines represent the Millennium 
Drought perios 1997–2009). 

3.3 Unsupervised clustering – Self Organising Maps (SOMs) 

The self-organising map algorithm is from the family of unsupervised neural networks, used for 
clustering, dimension reduction and visualisation. Being ‘unsupervised’ means it is able to 
determine relationships in the data that are not provided as input and can therefore extract 
patterns in the data that are not known beforehand. The SOM works by placing a mesh of 
interconnected nodes over a high-dimensional data cloud and through an iterative process refines 
the placement of the nodes to best represent the shape and density of the data, whilst 
maintaining a connection between neighbouring nodes. This process determines the most 
prevalent patterns that are present in the dataset. After the training process is complete, the data 
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items are each matched to the nearest node of the map, creating clusters of data with similar 
patterns. For more information on the SOM algorithm, see Clark (2022) and Kohonen (1990). 

As with the hierarchical clustering above, here the observation bores are clustered based on 
annual average depth to standing groundwater levels (DTW). Before clustering, the water levels 
are scaled into the range [0,1] to enable comparison between groundwater level variations that 
occur on different scales.  

The results of the self-organising map are shown in Figure 10. Levels have been inverted (Water 
level = 1 - Depth to Groundwater) for intuitive interpretation - a declining line on the plot indicates 
a declining groundwater level. The number of bores in the data set which are best represented by 
each pattern is indicated in the lower left of each subplot. 

 

 

Figure 10 Clusters of groundwater level time series as found with the self-organising map algorithm. The main 
pattern of each cluster is shown (black line), along with the measurements from bores matched to each pattern 
(light grey points). The number of bores that best match each pattern is noted for each subplot. 

3.4 Comparison and performance of hierarchical versus SOM 
clustering 

Comparing the clustering results of the hierarchical and SOM methods (considering clusters to be 
numbered 1-3 from left to right on the top row and 4-6 on the lower row), the patterns from both 
methods correspond well for all clusters with the exception of cluster 5. The number of time series 
(observation bores) that best match each pattern differs between methods, with about half of the 
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time series that are attributed to Cluster 1 with the hierarchical clustering method spread 
between Clusters 3, 4, and 5 with the SOM. The number of time series in Clusters 2 and 6 are 
almost the same for both clustering methods. 

Figure 11 shows the spatial comparison of the patterns obtained from hierarchical clustering and 
SOM. In terms of the mean square error (MSE) both clustering techniques show similar numerical 
performance. Overall, the six dominant clusters in groundwater level trends are correctly 
identified by both techniques. Two areas of discrepancy arise in the upper Condamine Tributaries 
and Mid-Murrumbidgee. In the former, clusters identified correspond to Cluster 4 (SOM) and 
Cluster 1 (HC). Both clusters are similar with the cluster identified by SOM showing a higher range 
in the representative times series. For Mid-Murrumbidgee the clustered patterns are similar and 
only differences in the stable trend prior to the pronounced declining trend are observed, e.g., 
Cluster 5 (SOM) vs Cluster 2 (HC). 
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Figure 11 Comparison of Hierarchical and SOM clustering techniques. Panels a, c and e, cluster groups. Panels b, d and f, mean square error (MSE) 
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3.5 Geographical analysis of clustering results 

A geographic analysis of the SOM clustering results is shown in Figure 12. Bores are coloured by 
cluster as indicated in the legend. 

 

 

Figure 12 Geographic representation of SOM clustering. 

 

It can be seen that the region shown in the upper panel ( a) Condamine) contains a mixture of all 
patterns; the middle panel ( c) Namoi, Gwydir) has mostly yellow and red bores (relatively 
constant decline before and during drought, evening out post-drought), with some turquoise - the 
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turquoise pattern is similar to the yellow and red but shows better recovery between drawdown 
events; and the region in the lower panel ( e) Lachlan, Murrumbidgee, Murray, Goulburn) is 
dominated by orange (stable pre-drought followed by a steep decline during the Millennium 
Drought) with some blues (steep decline but more recovery) and purples (increasing before and 
immediately after the drought). 

The geographic distributions of hierarchical clustering results are generally consistent with those 
of the SOM clustering results (Figure 11). However, one of the significant differences is that Cluster 
1 (C1 in Figure 8 and Figure 9) includes 454 out of 910 of groundwater bores (about 50%) from 
hierarchical clustering, but only 247 out of 910 bore (27%) based on SOM clustering (Figure 10), 
indicating that Cluster 1 has a wider spatial distribution for hierarchical clustering results (Figure 
11).  

3.6 Temporal analysis and impact of the Millennium Drought (MD) 
on clustering results 

As this data set contains groundwater level measurements from before, during and after the 
Millennium Drought, further analysis is conducted here to determine whether areas with similar 
groundwater patterns before and during the drought continued to behave similarly after the 
drought. The time series are split into three periods corresponding to: before (1971-1996), during 
(1997-2009) and after (2010-2021) the Millennium Drought (Fu et al., 2023). 

However, we cannot use all 910 bores for this analysis, as the data filtering criterion (at least two 
records for a 40-year period) applies to the entire study period 1971–2021, which could 
potentially lead to a very small sample size for one period. For example, all 11 missing years might 
be located at the post-drought 2010–2021 period, resulting in only 1 data point available for the 
groundwater level time series at this bore, and accordingly a meaningless trend magnitude. 

A sub-set of 661 among 910 bore data is selected by requiring at least 70% data points of 
groundwater level time series at each of three time periods, i.e., before, during and after the 
Millennium Drought. 

Figure 13 shows the cumulative distribution function of trend magnitude of depth to standing 
water level (DTW) in these three periods. The magnitude value indicates the rate of change of the 
groundwater level over time. Because it is based on depth to standing water level measurements, 
a positive magnitude indicates a decline in groundwater level, i.e., groundwater level becoming 
deeper with time. 

Over this sub-set of bores, it is evident on Figure 13 that the trend magnitudes are the largest 
(indicating a steeper decline in groundwater level) during the Millennium Drought period due to 
the dry climate. In contrast, trend magnitudes before the drought are the smallest because of wet 
climate, and the magnitudes after the drought generally fall into the middle, except the negative 
trend magnitudes.  The negative trend magnitudes after drought period at 20–25% groundwater 
bore locations imply the recovery of groundwater level from dry period with wet climate 
condition. The rest 75–80% bores still show a decreasing of groundwater levels, but their 
magnitudes are smaller than those observed during the drought period.  
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Figure 13 Slopes of DTW time series separated into 3 segments: before MD 1971-1996 (dark blue), MD 1997-2009 
(red), after MD 2010-2021 (green), and entire time series 1971-2021 (black). Positive slopes mean the groundwater 
level is decreasing over time. Each time series has a dot of each colour representing its slope in each of the 3 time 
periods. Observation bores are arranged along the x-axis by slope of the 2010-2017 segment. 

 

The SOM in Section 3.3 was based on clustering the groundwater time series to determine 
similarities that exist over the entire time period (1971-2021). However, the large variation in 
groundwater level time series gradients that has become evident in the third period (after the 
Millennium Drought) may provide insightful information into recent regional groundwater 
behaviour – observation bores that were behaving similarly before and during the drought may 
have different post-drought responses. 

Here, a new SOM is created in which the set of time series are first clustered based on before- and 
during-drought patterns, and these clusters are then refined by post-drought information. The 
three main patterns identified in the data before and during the drought by this SOM are shown in 
Figure 14. Note that there are now 3 main patterns identified rather than the 6 identified in the 
previous section as the post-drought period is not being considered here. On Figure 14, the three 
main patterns are characterised by: groundwater levels remaining steady before the drought 
followed by a swift decline during the drought (on the left), a constant decline before and during 
the drought (centre), and a general increase in groundwater levels until the drought followed by a 
decline (on the right). 
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Figure 14 Three main patterns in groundwater levels before and during the Millennium Drought (1971-2009) as 
found by the SOM algorithm. The number of time series that match each pattern is denoted in the lower left of 
each plot. 

 

These groundwater level patterns before and during the drought can now be refined by 
information from after the drought. The 401 bores from the first cluster of Figure 14 (with 
groundwater levels steady before the drought and declining during the drought) are further 
clustered in Figure 15 based on the post-drought measurements. Four patterns of post-drought 
behaviour are observed, all of which have some degree of increased groundwater level 
immediately following the drought (Figure 15a). After this initial post-drought increase, the 
behaviour diversifies into further increase, steadying or declining. On Figure 15b, the origins of 
these patterns are aligned for comparison of the potential groundwater level paths for these bores 
that had similar before and during drought behaviour. 

   

(a) 

 

(b) 

 

Figure 15 Prevalent patterns of post-drought behaviour (2010-2018) in groundwater time series that were steady 
and then declining before and during the Millennium Drought (first cluster of Figure 14). 

3.7 Causal attribution 

Understanding the main factors driving groundwater level changes in these aquifers will help to 
focus specific efforts for mitigating groundwater level changes. Different drivers will affect 
groundwater levels differently in each region. For example, groundwater extractions may be 
strongly influencing groundwater depletion in some resource units, whereas other resource units 
may be more affected by changes in rainfall and PET. In order to understand which factors may 
have the greatest effect in each groundwater SDL, a causal attribution analysis will be performed. 
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3.7.1 Method  

The first step in the causal attribution process is to represent the system in terms of a response to 
predictor variables. In this system, the predictors include annual rainfall (current year and previous 
year), PET, groundwater use (extractions), and the number of new production/extraction bores. 
Each groundwater SDL has a single set of predictors (i.e., one value of rainfall/year per SDL). The 
predictors are shown in Figure 16, with values scaled into the range [0,1] by SDL to facilitate 
comparisons between systems at dissimilar scales. The system response variable is ‘annual change 
in average groundwater level’ at each bore, with each SDL having multiple groundwater 
measurement bores. Groundwater level measurements have been scaled to the range [0,1] by 
bore. 

 

 

Figure 16 Potential predictors of changes in groundwater levels. This data set has one annual value per predictor for 
each SDL. The groundwater use data begins in 2006. 

 

Correlations between the system response and each predictor variable give clues to causality. 
Figure 17 shows scatterplots of the change in measured groundwater level corresponding to each 
predictor measurement. Smoothers have been added to indicate trend by SDL for the change in 
groundwater level with respect to each predictor. It can be seen that increasing rain generally 
corresponds to increasing groundwater levels whereas increasing PET and groundwater use relate 
to decreasing groundwater levels, though not monotonically. There are noticeably fewer 
groundwater use data points than other predictors, as the data available for this variable begins in 
2006. 

A closer look at correlations between predictors and response variables is provided in Figure 18 for 
two of the resource units (Lower Namoi GS29: magenta, and Upper Lachlan GS44: blue). Density 
plots and scatterplots of the relationships can be compared for the two resource units. The second 
row indicates correlations between each predictor variable and the change in groundwater level 
(labelled ‘GWL_delta’). The ‘rain_comb’ variable, which combines each year’s rainfall with the 
previous year’s rainfall, shows a higher correlation with change in groundwater level than the 
current year’s rainfall alone (‘rain’). Therefore the ‘rain_comb’ variable will be used in the 
remainder of this analysis. For these two resource units, it is apparent that anthropogenic 
influences on the system appear more strongly through the ‘groundwater use’ variable for Lower 
Namoi GS29 whereas the number of new production bores (‘prodbore_delta’) is more strongly 
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correlated with groundwater levels in Upper Lachlan GS44. The prodbore_delta variable is the 
cumulative number of new production bores drilled each year within the resource unit based on 
drilled dates in the NGIS database. 

 

Figure 17 Scatterplots of changes in groundwater levels corresponding to the range of measured predictors. 
Smoothers (with shaded 95% confidence intervals) indicate general trends by SDL. 

 

 

Figure 18 Correlation of changes in groundwater level (‘GWL_delta’) with predictors for two example SDL’s (Lower 
Namoi GS29 in purple, Upper Lachlan GS44 in blue). Rainfall shows a positive correlation and potential 
evapotranspiration a negative correlation for both, whereas groundwater use and the number of production bores 
negatively impact groundwater levels differently for each SDL 

Neural network models are used to model the changes in groundwater levels for the set of 
predictors. In producing these models, a number of considerations must be made: 

• Predictors to be included: data begins in the 1970’s for all variables besides groundwater 
use, which begins during the Millennium Drought (in 2006). Including the groundwater use 
data in the model would significantly reduce the length of the analysis and therefore the 
size of the data set available for model training. However, excluding groundwater use data 
from the model potentially ignores a significant influence on groundwater level changes. 

• Separate models: should separate models be created on the SDL level, by cluster, by bore, 
or one for all regions together? Some resource units have groundwater level patterns that 
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match more than one cluster and it may be an issue to model these different responses 
with the same SDL-level predictors. 

• Response times: groundwater use (extractions) should cause an immediate response in 
groundwater levels but rainfall may have a longer period of influence. The average annual 
groundwater level value encompasses the entire year but during the beginning of the year 
this groundwater level is likely responding to climate conditions captured in the previous 
year’s rainfall and PET values. 

The second step in the causal attribution analysis is to interrogate the models to determine how 
the annual changes in groundwater levels depend on each predictor variable. Using the 
Permutation Feature Importance method [Breiman, 2001], the importance of each variable to 
predicting the response of the system is indicated by the difference in model performance when 
the model is run with this variable permuted (randomised or set to zero). One issue with this 
method is that if two predictors are correlated, both will be deemed unimportant. In this case, it 
would be best to separate the predictors into ‘climate’ influences (rain and PET) and 
‘anthropogenic’ influences (groundwater use and number of bores) before using this method. The 
error gradients at the weights of the neural networks could also be investigated to identify 
changes in model response with respect to changes in each predictor variable.  

3.7.2 Preliminary results 

To match the other parts of this report, the preliminary results shown here are on the SDL level. 
Preliminary results are given for two SDL’s (Lower Namoi GS29 and Upper Lachlan GS44). The 
neural network models used for this analysis are 2-layer multi-layer perceptrons (MLP’s). Model 
settings (hyperparameters) have not been optimised in this preliminary analysis.  

Figure 19 shows the modelled annual change in groundwater level (red) over the scaled 
measurements from all bores in the SDL (blue). As the predictors are provided at an SDL level, only 
one modelled response per SDL is produced (rather than one per bore). On the left panel, the 
predictors are year and climate data only (rain and PET) and this data extends back to 1971. On 
the right panel, anthropogenic data is added, and here the predictors are year, rain, PET, 
groundwater use and number of new production bores. As the available groundwater use data 
begins in 2006, so does this model.  
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Figure 19 Modelled annual change in groundwater level (red) at the SDL level compared to measured change in 
groundwater level (blue) at the bore level. Two SDL’s are shown (Lower Namoi GS29 and Upper Lachlan GS44). The 
left panel uses year, rain and PET to predict changes in groundwater levels; the right panel uses year, rain, PET, 
groundwater use and number of new production bores 

 

Improvements to the current data set, and therefore the modelling results, could include using 
rain, PET, and groundwater use information on a local basis rather than at the SDLRU level. More 
granularity is appropriate as climate and groundwater extractions vary within the SDLRU. An 
increase in the length of the groundwater use data set would also be of benefit. 

The above models can be interrogated to determine the impact of each predictor on the response 
of the system. Figure 20 provides a visualisation of the counterfactual scenario in which no 
extractions occurred in each SDLRU (groundwater use data set to zero) for the simple models 
shown in Figure 19. The yellow line indicates the updated prediction for changes in groundwater 
levels if extractions had not occurred. Without groundwater extractions included in the model, the 
predicted recharge in groundwater from the other predictors such as rain is increased (as shown 
by the yellow line higher than the red line). We see the estimated effect of recent groundwater 
extractions (difference between red and yellow lines) is greater on the model of the Upper Lachlan 
GS44 than the Lower Namoi GS29. Note that these are sample results only to indicate the type of 
interrogations that could be made; as the training data for these models currently only extends 
back to 2006, one prediction is made for the entire SDLRU, and a small set of predictor variables 
are used, the actual values shown are not as reliable as the fact that one SDLRU appears more 
affected by groundwater extractions than the other. 
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Figure 20 Modelled annual changes in groundwater levels (red) given the historic data, and the hypothetical scenario 
if no extractions had occurred (yellow). The simulated changes in groundwater levels in Upper Lachlan GS44 are 
considerably more positive under the no-extraction scenario 

 

Further methods for determining causal attribution might include determining the change in 
model performance by decade (or other time period). Simulations produced based only on climate 
data (groundwater use not included in the model) could be expected to show worsening 
performance over time as increasing groundwater use affects levels. Applying the Permutation 
Feature Importance method by time period could establish changes in the importance of each 
predictor in each region as time progresses. 
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4 Mapping of managed aquifer recharge 
potential under uncertainty 

This section presents a framework for Monte Carlo mapping of MAR potential based on the 
assessment of aquifer and physiographic features. It builds upon the work by Gonzalez et al. 
(2020) and the spatial interpolation of the groundwater levels trends obtained from Fu et al. 
(2022) and discussed in previous sections. By considering groundwater level trends instead of 
static-in-time groundwater levels, the MAR potential assessment is improved by adding a dynamic 
aspect to the initial assessment implemented by Gonzalez et al. (2020). 

4.1 Scope 

The proposed approach will apply a spatial screening analysis methodology that accounts for 
uncertainty in assessment of managed aquifer recharge (MAR) potential. The study area includes 
the main alluvial aquifer systems shown in Figure 1. These build on the methods used in an earlier 
spatial analysis of aquifer storage potential in the MDB (Gonzalez et al., 2020) and a subsequent 
study that covered other regions around Australia (Page et al., 2021). Gonzalez et al. (2020) 
focussed on storage potential in unconfined aquifer conditions and used six spatial criteria to 
indicate where infiltration recharge techniques are feasible (Figure 21). 

 

Figure 21 Spatial input parameters for assessment of aquifer storage potential in the Murray–Darling Basin 
(Gonzalez et al., 2020): topographic slope (a), soil clay content (b), surficial geology (c), regolith thickness (d), depth 
to water table (e), groundwater salinity (f). 
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The proposed approach will use updated data sources and collect data and develop methods to 
assess MAR potential in confined sections of the main alluvial aquifer systems. 

Gonzalez et al. (2020) identified potentially viable areas for MAR and considered proximity to a 
recharge water source (major river), and demand (irrigated agriculture) (Figure 22). Order of 
magnitude level estimates of potential aquifer storage volumes were made based on a broad 
assumption of unconsolidated aquifer storativity, and a minimal unsaturated zone thickness. The 
main advancement of the proposed methodology compared to the 2020 study, is transitioning 
from deterministic estimates based on uniform assumptions, to stochastic estimations of storage 
areas and potential volumes. This would enable answering questions such as: 

• What is the probability that MAR is feasible in an area? 

• Where is MAR most likely to be feasible? 

• What areas are feasible for MAR at a given confidence level? 

• What is the expected range of available aquifer storage volumes in an area? 

• What is the likely storage volume in an area at a given confidence level? 

 

Figure 22 Murray–Darling Basin (MDB) regional aquifer storage potential in alluvium, colluvium, and sand plain 
aquifers where clay content < 40%, slope < 10%, regolith thickness > 10 m, water table depth > 5 m, and 
groundwater < 3000 mg/L, and within 5 km of major watercourses and irrigated agriculture (Gonzalez et al., 2020). 
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4.2 Framework proposed 

Uncertainty in estimated MAR potential will be captured by using Monte Carlo thresholds for 
spatial criteria to map constraints (Figure 23). The assessment will use a gridded, spatial screening 
approach and focus on several key criteria that determine MAR potential for each grid cell across 
main alluvial SDL resource units (Figure 1). For unconfined aquifers sections of these systems 
criteria include: 

1. Topographic slope 

2. Soil clay content and as indicator of permeability 

3. Aquifer presence and lateral extent (SDL resource areas) 

4. Aquifer vertical thickness (model data or regolith thickness product) 

5. Water table height (e.g., interpolated from groundwater level trend analysis data) 

6. Groundwater salinity (e.g., interpolated from bore observations, Figure 3) 

7. Some measure of groundwater productivity e.g. to represent potential bore yields 

 

Figure 23 Stochastic mapping process for assessing MAR potential (map panels use synthetic data for illustrative 
purposes) 

 

For confined aquifers, criteria related to infiltration potential are irrelevant and the assessment 
focusses on: 

1. Aquifer presence and lateral extent (SDL resource areas) 

2. Aquifer vertical thickness (model data or regolith thickness product 

3. Piezometric head (interpolated from groundwater level trend analysis data) 
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4. Groundwater salinity (e.g., interpolated from bore observations, Figure 3) 

5. Some measure of groundwater productivity to represent potential bore yields 

The methodology requires input data represented on a uniform assessment grid, i.e., matched 
extent and resolution. A spatial resolution equivalent to 9 arc seconds (~250 m) is considered 
appropriate for this level of analysis and expected spatial precision and accuracy of input data. 
Criteria are passed through a bounded array of thresholds to generate stacks of Boolean arrays 
that are combined through a product function resulting in multiple grid realisations representing 
areas where all criteria are met (Figure 18). Derivative grids are calculated from probability of 
meeting criteria, e.g., storage volume estimates at given probability levels based on unsaturated 
zone thickness (unconfined aquifers), piezometric head (confined aquifers), and storativity 
(effective porosity in unconfined aquifers, specific storage in confined aquifers).  

4.3 Preliminary results 

The assessment coding framework is complete however synthetic data are being used as 
placeholders to test the analysis and draft figures and summary results. The first output is a grid 
showing the proportion of realisations where all criteria are met. Preliminary results are shown in 
Figure 24 for unconfined aquifers. This map highlights the areas where infiltration-based MAR is 
most likely to be feasible according to the criteria and threshold ranges used (noting these results 
contain synthetic data for illustration). 

 

Figure 24 Probability of meeting all criteria for infiltration-based MAR potential in unconfined areas across the main 
alluvial SDL resource units in the MDB. Results are preliminary and contain synthetic data for illustration 

Results can also be summarised by total area meeting all criteria at different ‘confidence’ levels, 
e.g., 65,000 km2, 32,000 km2 and 13,000 km2 where criteria are met 10%, 50% and 90 % of the 
time respectively. These totals can also be disaggregated to summarise results at SDL resource 
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unit level and be screened to consider proximity to water courses or irrigated areas (areas of 
potential sources for recharge and demand for water). 

The second set of outputs are grids showing potential storage volumes at different confidence 
levels across the study area. An example using synthetic data is shown in Figure 25 for storage 
volumes in unconfined aquifers at the 50% confidence level (where 50% of realisations meet all 
criteria). Results are expressed in GL per grid cell (resolution of ~255 m) and are a product of the 
grid cell area meeting criteria, the height of the available unsaturated zone (or storage space), and 
effective porosity estimates. 

 

Figure 25 Estimated storage volume (GL) per grid cell at 50% confidence level for unconfined aquifers in the main 
alluvial SDL resource units in the MDB. Results are preliminary and contain synthetic data for illustration 
 

Total volume estimates at different ‘confidence’ levels can be made and aggregated to summarise 
results at SDL resource unit level. Results can also be screened to consider proximity to water 
courses or irrigated areas (potential recharge water sources and demands for stored water). 
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5 Evaporation savings by implementing MAR  

5.1 Scope 

The objective of this section is to provide quantitative insights regarding the degree to which 
aquifer storage accessed through infiltration basins offers evaporative savings compared to 
equivalent surface storage. In this section we explore how evaporative losses through aquifer and 
surface storage change according to location, climate, and scheme scales and conditions.  

Cumulative evaporative losses as a proportion of cumulative diverted volumes from a given water 
source (e.g., river) through infiltration basins and aquifer storage and dam storage will be 
compared. Outcomes of the study can inform where MAR can offer most potential savings and 
under which scales and conditions. This analysis contributes to the foundational analysis of MAR 
assessment and feasibility, for a posterior fully-fledged assessment of economic benefits of costs 
of implementing MAR. 

5.2 Methodology and assumptions 

The proposed approach involves water balance simulations using hydrological time series to 
trigger water diversion to aquifer and dam storage. Evaporation time series, matched to the 
corresponding discharge time series are used to calculate losses during infiltration or surface 
storage. A range of infiltration basin and dam configurations are simulated based on conditions in 
different climate zones across the main alluvial aquifers of the MDB. 

The approach makes several general assumptions: 

1. A monthly time step where river diversion, aquifer recharge and any losses are calculated 
for each month 

2. Annual scheme capacity (target recharge or diversion volume) is determined assuming the 
target volume is achieved during 6 out of 12 months each year 

3. Infiltration recharge rate (m/month) is based on daily rate (m/day) and assumed to occur 
over 15 days in the month when triggered 

4. Target volume is diverted when river discharge exceeds set quantile value (trigger) 

5. Infiltration basin area is a function of target volume, infiltration rate and a factor of 0.4 to 
approximate a 3:1 basin side batter slope 

6. Basin evaporation losses occur during infiltration over 15 d/month when triggered, 
monthly evaporation based on time series calculated across the basin area 

7. Same target volume is diverted to dam and evaporation loss occurs whenever there is 
positive water balance in dam based on the surface area to volume relationship for the 
given dam configuration 

8. Simulations assume no rainfall inflow, and no other outflows, e.g., water use, aquifer losses 
or dam seepage loss 
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Data sources include: 

• Long term river discharge time series from hydrological reference stations.  

• Patch point Morton’s Lake evaporation data for open water evaporation from the SILO 
database for the nearest available station. 

• Dam surface area (SA) to volume (V) relationships for corresponding storages based on 
modelled and observed data. 

It is proposed to replicate the analysis for multiple locations in the MDB targeting the main alluvial 
aquifer systems that represent different climate and hydrological conditions and corresponding 
dam configurations. Each location will simulate a range of infiltration basin capacities and 
infiltration rates. 

5.3 Preliminary results 

The calculations rely on surface area to volume (SA:V) relationships for the estimation of potential 
evaporation. For infiltration basins this is simply a function of the target capacity and infiltration 
rate, and a generic basin design that assumes 3:1 batter slope approximated using a factor of 0.4. 
For surface storage dams, the SA:V is derived using curves fitted to modelled area and volumes for 
Australian dam used in the AWRA-R v5.0 model (Dutta et al., 2015). In the case of Lake Keepit, a 
power function produces a fit with an R2> 0.99 (Figure 26). This equation is used in the 
evaporation calculations to determine the area of the dam at any given volume. 

 

 

Figure 26 Surface area to volume (SA:V) relationship for Lake Keepit derived from the AWRA-R v5 model 

 

A reference case using a typical farm dam configuration is used to compare modelled dam SA:V 
and associated evaporation. This is based on a review of farm dam volumes and surface areas in 
Australia (Lowe et al., 2005) where an equation to derived area from volume could be obtained as 
shown in Figure 27.  
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Figure 27 Volumes and surface areas of farm dams in Australia (equation derived from Lowe et al. 2005). 

 

Comparing the slopes and equations above it is notable that the farm dam slope is slightly steeper 
than that of Lake Keepit. Lake Keepit will therefore have higher average SA:V and more 
evaporation loss for the same volume held compared to farm dam storage in evaporation 
calculations. 

Preliminary evaporation results are given in  Figure 28 for an example comparing an infiltration 
basin with a target capacity of 1 GL/y and infiltration rate of 0.5 m/d with equivalent storage in 
Lake Keepit and a typical farm dam. Of the 72.2 GL diverted over the time series, 71.7 GL was 
recharged with a total loss to evaporation during recharge of 500 ML, less than 1% of the volume 
diverted. In contrast, storing the same diverted volumes in surface storages with the SA:V 
characteristics of either Lake Keepit or a typical farm dam results in significant evaporation losses. 
Of the same total volume diverted, around 2 GL and 4 GL is held in storage at the end of the time 
series in the Lake Keepit and farm dam storages respectively. Evaporative losses total 70 GL and 68 
GL or 98% and 94% of the volumes diverted respectively. 
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Figure 28 Evaporation losses comparing an infiltration basin with a target capacity of 1 GL/y and infiltration rate of 
0.5 m/d with equivalent storage in Lake Keepit and a typical farm dam design. Diversion triggered at 50% flow 
exceedance on the Namoi River (419005) and Morton Lake evaporation data from Narrabri (53026) 

 

If the same scenario is run assuming a basin infiltration rate of 0.1 m/d (instead of 0.5 m/d), 
greater evaporation losses are experienced during recharge, however, these remain an order of 
magnitude lower than Lake Keepit and farm dam losses (Figure 29). Basin losses total 2.5 GL or 
3.4% of the diverted volume. 
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Figure 29 Evaporation losses comparing an infiltration basin with a target capacity of 1 GL/y and infiltration rate of 
0.1 m/d with equivalent storage in Lake Keepit and a typical farm dam design. Diversion triggered at 50% flow 
exceedance on the Namoi River (419005) and Morton Lake evaporation data from Narrabri (53026) 
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6 Concluding remarks and next steps 

Integrated assessment in the main alluvial aquifers of the MDB shows that eleven groundwater 
resource units used to manage these aquifer systems face aquifer resilience, stress and 
sustainability issues. The severity of these issues depends on local conditions and thus the 
assessment provides valuable insights on where to potentially concentrate efforts to improve 
groundwater management in the MDB to target specific issues such as declining groundwater 
levels, groundwater salinity or GDEs consideration. 

The clustering analysis determined six dominant clusters explaining the main trends in historical 
(1971-2021) groundwater levels. Interpretation of each of these patterns indicates how the 
groundwater time series in each cluster behaved before, during and after the Millennium Drought. 
The two clustering methods, hierarchical clustering analysis (HCA) and the self-organising map 
(SOM) produced similar patterns with comparable numerical performance (MSE), indicating these 
six dominant patterns have been properly identified from the data set (910 observations bores). A 
difference arose in the number of time series which were allocated to each cluster, however a 
geographical analysis indicated that this was the result of time series within specific areas being 
attributed to closely-related patterns. The cluster-based geographic analysis also showed the 
Namoi and Gwydir region to have groundwater levels generally declining pre- and during the 
Millennium Drought with an evening-out afterwards, and bores in the Lachlan, Murrumbidgee, 
Murray and Goulburn region generally showed stable or increasing groundwater levels pre-
drought, followed by a decline and a partial post-drought recovery.  

A causal attribution framework is being developed to determine the main contributors to 
groundwater level changes in each region. This involves representing each region with a neural 
network model that can simulate changes in groundwater levels given certain climate and 
anthropogenic conditions. Once these models are developed, they can be probed to determine 
which driving factors are impacting the groundwater levels the most, using a mixture of visual and 
computational methods. It is possible to investigate these attributions temporally as well as 
spatially (including vertically), to determine if the main factors contributing to altered 
groundwater levels have transformed over the period of study. Accessing spatially and temporarily 
comprehensive data on groundwater use will largely determine the quality of the causal inference 
under anthropogenic conditions. 

The preliminary results of the MAR potential mapping assessment illustrated the types of outputs 
generated with the assessment methodology for unconfined aquifer conditions. A modification of 
this methodology will be developed for confined aquifer conditions as described in 4.2. This will 
exclude criteria associated with infiltration potential and focus on aquifer properties. Storage 
assessments will be based on assuming additional storage would not result in creating artesian 
conditions. One of the key input data to both confined and unconfined assessment is the available 
height for recharge and storage. Previously this was done through basic interpolation of 
groundwater level data, e.g., median levels in bores since year 2000, and assumptions that 
recharge should not induce a water table rise beyond a certain level to avoid issues at the surface 
(Gonzalez et al., 2020). The current study will test the feasibility of using groundwater level trend 
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magnitudes (e.g. described in Section 3) as a basis for spatial interpolation. This will capture 
temporal dynamics in groundwater levels and avoid assumptions of maximum allowable water 
level rise. In areas where groundwater has been in long-term decline, it can instead be assumed 
that the upper limit for MAR would be the historical level prior to intensive extraction. 

Results of the evaporation calculations indicated the potential savings that could be realised by 
using sub-surface storage (infiltration basins) in locations where there is a suitable aquifer and 
where surface storage configurations, either existing or proposed, have limited efficiency due to 
high SA:V relationships and high evaporation potential. Replication of these calculations in 
different areas with a range of conditions and configurations will yield more insights into where 
MAR can offer potential benefits. It should be noted however, that the results presented here 
overestimate actual evaporative losses from surface storage as usage is not factored. If water was 
stored in a dam for a period and then used, the used volume would not be subject to evaporation 
loss and the proportion of total diverted water lost would be reduced. Evaporation losses reported 
here should not therefore be interpreted as potential losses from reservoirs or farm dams under 
normal operation. Water stored in aquifers may also be subject to reduction through hydraulic 
loss or water quality limitations not considered here. Similarly, extraction of stored water could 
reduce actual losses over time and to account for this demand should be considered. 

In the third year, RQ8b research will focus on consolidating our understanding of MAR as an 
operational adaptation option to water management in the MDB. Planned activities include 
proposing and exploring a framework for economic assessment to reduce uncertainty around the 
costs of MAR at different scales and operating conditions. The results of the resilience, stress and 
sustainability assessment, in combination with mapping of MAR potential will be used to develop 
one or more conceptual MAR site configurations for estimating the costs of implementing a MAR 
scheme in a proposed location. To contextualise the assessment, the policy and regulatory 
principles and framework needed to enable the implementation of MAR will be explored. This will 
depend on the scale and objective of the conceptualised scheme, and potential ownership and 
governance arrangements. 
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Table A.1 Metered groundwater annual actual take reported in (MDBA, 2020b). BDL: Baseline Diversion Limit and 
SDL: Sustainable Diversion Limit as defined in Schedule 4 of the Basin Plan 

SDL 
code SDL name  

  
Annual actual take (GL/y)  Annual actual take GL/y 

2012-2019 
BDL 

(GL/y) 
SDL 

(GL/y) 
2012-

13 
2013-

14 
2014-

15 
2015-

16 
2016-

17 
2017-

18 
2018-

19 Max Min Average 

GS64a  Upper Condamine Alluvium 
(Central Condamine Alluvium)  81.4 46.0 32.3 55.1 41.1 42.0 48.0 50.5 57.7 57.7 32.3 46.7 

GS64b  Upper Condamine Alluvium 
(Tributaries)  45.5 40.5 33.9 32.9 30.6 32.6 32.8 33.7 35.6 35.6 30.6 33.2 

GS54 Queensland Border Rivers 
Alluvium 14.0 14.0 8.85 11.3 11.8 12.8 10.8 14.0 14.4 14.4 8.85 12.0 

GS32 NSW Border Rivers Alluvium 8.40 8.40 2.84 5.59 5.41 3.98 3.38 6.37 8.98 8.98 2.84 5.22 

GS33 NSW Border Rivers Tributary 
Alluvium 0.41 0.41 0.16 0.17 0.17 0.17 0.17 0.17 0.16 0.17 0.16 0.17 

GS27a  Lower Murray Shallow 
Alluvium  81.9 81.9 2.26 4.10 5.90 5.40 5.97 8.39 11.9 11.9 2.26 6.27 

GS27b  Lower Murray Deep Alluvium  88.9 88.9 56.2 45.2 67.5 85.5 36.7 78.9 110.7 110.7 36.7 68.7 

GS46  Upper Murray Alluvium  14.1 14.1 12.3 10.7 9.87 11.2 8.66 14.0 17.8 17.8 8.66 12.1 

GS28a  Lower Murrumbidgee Shallow 
Alluvium  26.9 26.9 5.25 6.47 7.15 6.21 6.47 8.17 8.32 8.32 5.25 6.86 

GS28b  Lower Murrumbidgee Deep 
Alluvium  273.6 273.6 179.6 230.3 300.3 268.5 151.5 323.1 377.9 377.9 151.5 261.6 

GS31  Mid-Murrumbidgee Alluvium  53.5 53.5 35.5 36.1 40.1 32.4 30.3 42.7 55.6 55.6 30.3 39.0 

GS25  Lower Lachlan Alluvium  123.4 117.0 87.2 104.9 120.5 97.5 91.4 127.2 131.8 131.8 87.2 108.6 

GS44  Upper Lachlan Alluvium  94.2 94.2 44.2 42.3 57.2 55.7 37.9 75.4 89.4 89.4 37.9 57.4 

GS26  Lower Macquarie Alluvium 70.7 70.7 26.9 29.7 32.0 35.2 18.6 40.8 47.4 47.4 18.6 32.9 

GS45  Upper Macquarie Alluvium  17.9 17.9 13.7 14.1 15.3 15.9 13.5 21.0 23.0 23.0 13.5 16.6 

GS29  Lower Namoi Alluvium  88.3 88.3 61.1 104.3 105.1 93.0 51.2 95.3 116.2 116.2 51.2 89.5 

GS47  Upper Namoi Alluvium  123.4 123.4 90.1 113.6 102.4 93.7 70.1 105.7 112.2 113.6 70.1 98.3 

GS48  Upper Namoi Tributary 
Alluvium  1.77 1.77 0.55 0.38 0.21 0.23 0.18 0.28 0.19 0.55 0.18 0.29 

GS24  Lower Gwydir Alluvium  33.0 33.0 29.3 46.4 43.3 35.5 23.8 35.5 37.5 46.4 23.8 35.9 

GS43  Upper Gwydir Alluvium  0.72 0.72 0.07 0.07 0.07 0.07 0.12 0.07 0.07 0.12 0.07 0.08 

GS8a  Goulburn-Murray: Shepparton 
Irrigation Region  244.1 244.1 41.3 35.5 43.7 79.5 54.2 43.4 96.3 96.3 35.5 56.3 

GS8c  Goulburn-Murray: 
Sedimentary Plain  203.5 223.0 101.2 98.4 136.5 141.5 138.9 120.9 149.1 149.1 98.4 126.6 
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