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Executive Summary 
Project Objectives 

The Murray-Darling Basin Authority (MDBA) requested the development of an automated tool for 
counting nesting waterbirds in the Murray Darling Basin to be delivered in a useable format for 
implementation across various locations and target species. To address these needs, this project 
undertook the development of a tool for a nominal species (Straw-necked Ibis) at a known breeding site 
(Mullins Swamp, near Beachport South Australia). In the Spring of 2021, a field campaign was 
undertaken by the Unmanned Research Aircraft Facility (URAF) to collect drone imagery of the colony. 
The aim was to establish the flight parameters and image characteristics necessary for automated 
detection of individuals. In collaboration with the Australian Institute of Machine Learning (AIML), an 
automated detection tool using machine learning was developed. The drone imagery collected was used 
to train, test and evaluate a model (in the detection of Straw-necked Ibis) to demonstrate its potential.  

Outcomes 

The considerable potential for accessible data collection and analysis techniques was demonstrated 
across the workflow.   

• off-the-shelf drone-mounted cameras used to capture extremely high resolution images (~ 6 mm)
at scales suitable for imaging extensive colonies

• development of machine learning software suitable for users with minimal expertise on a desktop
computer

• utilisation of images collected in combination with machine learning software to train a detector
model that estimates the Straw-necked Ibis colony population size with >90% accuracy

Deliverables 

• raw drone imagery of Straw-necked Ibis colonies collected at Mullins Swamp captured with
varied parameters, under a range of conditions

• image analysis software for operation in-house at the MDBA
• a demonstration Straw-necked Ibis detector model trained with the Mullins Swamp drone imagery
• operational guidelines for subsequent drone image capture and use of automated image analysis

tool
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1. Background
The Basin Plan 2012 outlines several commitments to maintaining and improving water-dependent 
ecosystems including bird breeding and recruitment. Ensuring waterbird breeding events occur is also 
critical to maintaining the ecological character of Ramsar sites and other wetlands. To help assess the 
success of water management initiatives there is need to accurately and routinely monitor waterbird 
numbers and breeding events, particularly to: 

• determine whether environmental watering events successfully supported and / or triggered a
breeding event, and

• regularly assess colonial breeding success numerically.

Furthermore, there is a lack of systematic continuous surveys of breeding, making Basin-wide analysis 
and trend analysis difficult.  

The Murray-Darling Basin Authority (MDBA) contracted the development and demonstration of a tool to 
count colonially nesting waterbirds automatically using off-the-shelf drones and cameras.  

2. Scope
The MDBA sought to have a tool developed to automate counts of nesting waterbirds in the Murray 
Darling Basin. The tool was to consist of two key components.  

1. Guidelines for image characteristics and data collection requirements for sub-contractors
engaged by the MDBA as needed

2. Data processing software to be run in-house for the MDBA
a. to detect and count a target species of nesting water bird colonies from appropriately

collected drone imagery
b. with capability to train additional detectors for other species in-house with appropriate

data
c. able to be run with minimal expertise
d. suitable documentation to run the tool

A demonstration detector was trained to detect and count a selected species (nominally the Straw-
necked Ibis (Threskiornis spinicollis) in Mullins Swamp. A drone imagery collection campaign was 
designed and performed to identify the imaging characteristics necessary to train a model for the target 
species. The field campaign informed the data collection protocol to specify imaging characteristics such 
as camera specifications, resolution, altitude and coverage. The detection tool pipeline and protocol 
enable training additional detectors for other target species or for other geographies / contexts with in-
house image labelling.  
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3. Methods 
The imagery for this project was collected by the Unmanned Research Aircraft Facility (URAF). The 
detection model software was developed by URAF and the Australian Institute for Machine Learning 
(AIML).  

The methods sections describe the data collection procedures, followed by the process of training the 
detector.  

3.1. Data collection 

This section describes the drone imagery capture methods to generate data of indicative quality to 
successfully train the object detection model.  

Drone flights were conducted by pilots holding Remotely Piloted Licences (RePL) under the University of 
Adelaide Remotely Piloted Operators Certificate (ReOC) in accordance with Civil Aviation Safety 
Authority (CASA) regulations. Animal ethics approval was sought prior to the commencement of the field 
campaign (University of Adelaide Ethics Approval 35375).  

3.1.1. Study location  
The original study site was planned to occur at a test site within the Murray-Darling Basin. However, 
COVID-19 interstate travel restrictions led to relocating the study site to Mullins Swamp, near Beachport, 
South Australia (-37.5099, 140.1482). This site was host to a Straw-necked Ibis breeding colony with an 
estimated 20,000-30,000 birds nesting at the site in the Spring.  

 

Figure 1: Mullins Swamp survey site in South Australia 
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3.1.2. Equipment  
Image acquisition was performed with widely available off-the-shelf equipment to enable future 
acquisitions to be performed by third party drone operators.  

Drone 

DJI Matrice M300: Approx. weight 6.3 kg (without payload); Flight time: approx. 40 minutes. Manual and 
automated flights controlled using DJI Pilot ground station software.  

The aircraft requires that the operator hold a Multirotor <25kg Remote Pilot Licence (RePL) operating 
under a Remotely Piloted Aircraft Operators Certificate (ReOC) (see CASA for further regulation details).  

Camera 

A Zenmuse P1 RGB camera with a 45 megapixel full-frame sensor. The camera is able to accommodate 
the DL / DL-S lenses ranging from 16mm to 50 mm. The gimballed camera native to the DJI Matrice 
M300, with real-time video feed to the ground-station. Each image is embedded with a geotag of the 
aircraft coordinates at the time of its capture.  

3.1.3. Image capture   
Imagery was captured at Mullins Swamp in mid-Spring on the 27th and 28th of September 2021 to 
coincide with a known breeding event for approximately 20,000 Straw-necked Ibis. Imagery was 
primarily collected over the central area of Mullins Swamp, referred to as Mullins Swamp Mid-lake. Some 
opportunistic additional data was collected at a breeding site at the Mullins Swamp Northern Lake, 1 km 
north of the Mid-Lake. 

Mission planning  

Manual reconnaissance flights with live video from the aircraft were used to establish the extent of the 
breeding colony. The 25 ha extent provided a conservative 50 m buffer to ensure that the whole colony 
was captured.  

The boundary of the extent was entered into the flight planning software DJI Pilot. The software is 
primarily used for mapping purposes to capture imagery for photogrammetry. It creates a flight plan 
following parallel transects to cover the desired imaging extent. The user specified altitude, overlap and 
sidelap are used by the flight planning software to compute nominal spatial resolution, flight speed, as 
well as capture intervals along and between transects. The parameters also account for the camera 
specifications such as sensor resolution and size, lens focal length and capture rate. 

The parameters were selected to capture imagery of:  

• adequate spatial resolution to identify discriminable features of adult individuals such as shape, 
size and colour 

• each image is adjacent to one another with no overlap or gaps between them 
• maintain as much altitude as practicable to avoid distressing or harming wildlife 

Table 1: Imaging parameters used to capture dataset used for detection tool development 

Date and 
time Area 

Overlap 
and 
sidelap 

Altitude  
Lens 
focal 
length  

Image 
footprint 

# of 
images 

Data 
volume 

Nominal 
spatial 
resolution 

Flight 
duration 

28/09/2021 
1015 25 ha 10%  70 m 50 mm 50 x 33 

m 205 3.53 GB 6.2 mm 6 mins  

 

https://www.casa.gov.au/drones/get-your-operator-credentials/remotely-piloted-aircraft-operators-certificate
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Additional data 

Numerous image datasets were collected during the campaign, trialling various capture parameters 
including altitude, lens focal length and time of day. These data were not analysed, but are included in 
the project data deliverables package (Appendix A). The highest nominal spatial resolution data is used 
throughout this report, however there is considerable opportunity to explore the model sensitivity to data 
captured under those variations in capture parameters. If it could be established that lower resolution 
image data yields comparable / adequate population estimation precision, the outcome would result in 
more efficient field costs, data volume and processing times.  

As part of the data collection campaign, imaging was performed in accordance with standard 
photogrammetric practice involving 70% overlap and sidelap. They were used to generate a georectified 
orthomosaic. The orthomosaic was used as a visualisation basemap. Although beyond the scope of this 
project, the orthomosaic has potential for comparative analysis of population estimates between the low 
overlap and orthorectified datasets. Although photogrammetric methods involve considerably greater 
time, data and compute costs, they can present opportunities for spatially explicit analyses of potentially 
ecologically meaningful monitoring methods such as colony shape, size, location and patterns across 
space and time. The automated detection tool does not currently support the orthomosaic data structure, 
but it could be enabled with minor modification to the code. The current functionality of the tool uses 
individual images which avoids the prohibitive barriers that are inherent in the use of orthomosaics.  

3.2. Automated detection tool 

The machine learning automated detection tool is software collaboratively built by AIML and URAF. The 
primary functions of the tool allow users with minimal programming expertise to train a model capable of 
detecting target species and to then use that model to automatically count the target species. A 
demonstrative trained model was built to count Straw-necked Ibis in a breeding colony in Mullins Swamp 
Mid-Lake using the imagery described in Section 3.1.3. 

3.2.1. Tool functionality 
The workflow used for automated object detection involves three relatively discreet components: training 
a detector model, implementing the trained detector model, and detector model performance evaluation.  

The initial component involves training a detector by providing it with examples of the object to be 
detected. Detector model training is performed by a user systematically identifying every individual in the 
images used for training. The identified individuals are labelled by drawing boxes over the individual as 
precisely as possible to encompass all pixels occupied by the bird, avoiding pixels that do not. 

Within the training component of the tool, sub-modules allow the user to:  

• organise and filter images before labelling  
• label the images 
• prepare the labelled datasets in a format which can be ingested by the model training component  

The training component contains a module to initialise an instance of Label-Studio, an open-source data 
annotation application for machine learning. The application includes features for manually interpreting 
images and annotating the target species with bounding boxes. The downstream Python modules ingest 
the annotations exported by Label-Studio. 

https://labelstud.io/
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The labelled images and labels are used to train a detector, which generates a model that can be used 
to identify similar objects in other imagery. The trained detector model ingests images where it detects 
the objects, referred to as predictions. The output is a sum of the number of predicted detections it has 
made for each image.  

Detector model performance assessment requires that an independent evaluation set of labelled images, 
unseen by the trained model, are run through the trained detector model. The sum of labelled individuals 
in each image in the evaluation set is compared to the sum of predicted detections for the same image. 
The level of agreement between those counts is represented by a line of best fit in a linear regression.  

 

 

Figure 2: Diagram displaying the training and detection processing pipelines for the tool 

 

3.2.2. Training tool for Mullins Swamp imagery  
A model was trained to detect Straw-necked Ibis using the images collected at Mullin’s Swamp on 28th 
September 2021. The following describes the workflow used to train the model.  

1. 205 raw images captured (data capture as per Table 1)  
2. Filter out the images with no birds 

a. Mark every bird in all images with points using DotDotGoose 
b. 88 images with no birds marked discarded 
c. 117 images containing birds left to use to train the model 

3. Create calibration and evaluation subsets 
a. 17 images randomly selected for a hold-out evaluation subset 
b. 100 images used for training 

4. Each of the 100 images were split into 160 (16 columns x 10 rows) smaller non-overlapping 
slices as required by the FasterRCNN base network 

5. The slices were filtered using the DotDotGoose point file to exclude slices without birds from the 
labelling set 

6. The slices containing birds were labelled using Label-Studio  

Output 
count per 

image

User 
Images

Ingest Raw 
images

Detector 
model

Model
evaluation

Evaluation 
image 
subset

Training 
images

Ingest Raw 
images

Label 
images

Train  
Detector 
Model

https://biodiversityinformatics.amnh.org/open_source/dotdotgoose/
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7. A Region Proposal Network (RPN) was used with a FasterRCNN base network to train the object 
detector, ingesting the labelled images 

8. Empty slices were added into the training set to reduce false positive detection bias and 
successfully reduced overcounting 

9. To avoid overfitting, early stopping patience was employed to reduce the number of training 
epochs  

10. Performance between models was compared and the selected model was chosen based on the 
highest Mean Average Precision (mAP) on the validation set 
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4. Model results and evaluation 
The counts in the 17 hold-out evaluation images were compared against the predicted counts of the 
detector model. There is agreement between the two counts (Figure 3), with a strong linear slope 
(y=1.009) and correlation R2 = 0.997, resulting in an overall error of 3 %. Figure 4 illustrates the outputs 
of the predicted bounding boxes for the individuals detected and the annotated confidence that the 
predicted object matches the trained object. 

 

Figure 3: Manual vs Predicted bird counts for images in the hold-out evaluation set 

 

 

Figure 4: Examples of image slices with predicted bounding boxes and associate confidence value 
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An opportunistic dataset was collected at a separate Straw-necked Ibis breeding colony north of the 
original site. It allowed a test of the model performance under slightly different environmental conditions. 
The seven images containing birds were run through the detector model. The number of birds predicted 
by the model show strong linearity between the manual counts and 8.2% error on the predicted counts 
(Figure 5). A large proportion of the error was due to false positive detections, most likely due to 
differences in colour and texture in the substrate (Figure 6). This form of overcount may be reduced by 
retraining the model with additional blank slices from this site in the training phase or by adjusting the 
detection confidence threshold.  

 

 

Figure 5. Predicted vs Manual bird counts for the hold-out set captured at the Mullins Swamp Northern Lake site. 

 

 

Figure 6. An example of overcounting within a hold-out set from a separate colony and location to the training set. The 
gaps in the substrate floating on the water surface display features similar enough to be counted as a detection. 
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5. Discussion  
The trained detector model outputs demonstrate the capacity for the tool to detect individual Straw-
necked Ibis in the drone images with a high level of accuracy compared to those manually identified by a 
person. Numerous factors contributed to the accuracy. These include factors relating to image capture, 
the target species, site specific factors and model training. The imaging and model training guidelines in 
Sections 6 and 7 respectively outline key workflow considerations for future projects.  

5.1. Model accuracy, error and uncertainty 

The reported high accuracy metrics are related to the sum of individuals present in each image. The 
imagery was captured with adequate resolution to identify features of the target species and discriminate 
them from other landscape features present in the imagery. Lighting conditions during capture were 
sufficient to capture sharp, low noise images. However, the high detection accuracy metrics do not 
account for various sources of error and uncertainty in the data capture and tool implementation 
components of the workflow. Some of these uncertainties can be mitigated, while others are currently 
unavoidable and should be considered when interpreting the results.  

5.1.1. Data capture 
The high level of agreement between human and model predictions are related to the individuals present 
in the images. Factors contributing to the encouraging results include the nominal spatial resolution of 
the imagery relative to the Straw-necked Ibis, features in the appearance of the species that are 
distinctive relative to the background substrate and their congregation in an open landscape with no 
occluding vegetation.  

However, some disparity exists between the ‘true’ colony population size and what is represented in the 
imagery as a proportion of the colony in flight / transience were not captured.  

The imaging mission was performed in a pattern of parallel transects over 6 minutes. During the mission 
it is likely that individuals moved during the mission resulting in either being imaged twice or not at all. 
This is expected to have negligible impacts on the overall count in this case but could present greater 
issues for colonies with different behavioural patterns.  

During the imaging missions a considerable proportion of the colony was also in flight, engaging in 
thermal gliding in a column rising to ~200 m above the colony (>100 m above the drone during capture). 
Our approximate estimation of birds in flight is >1,000, almost all of which will have avoided being 
imaged, while some may have been imaged as birds in flight. The consequence is an underestimation of 
final population count and is considered an unavoidable source of error.  

Colony behaviour is expected to vary between habitats and monitoring epochs as a response to 
environmental conditions such as temperature, vegetation type etc. These unaccounted variations will 
affect the comparability between monitoring events. To mitigate these impacts, observations of colony 
behaviour during data capture should be included in metadata at the time of data capture.  

5.1.2. Model performance 
The model evaluation metrics indicate high detection accuracy for the dataset the model was trained on 
in the Mid-Lake. While the accuracy remained relatively high for the Northern Lake dataset, greater error 
was observed. The sources of increased error are expected consequences of variation in habitat 
structure and lighting conditions, such as the false positive detection of shadow in Figure 6. These errors 
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are analogous to what is to be expected for subsequent monitoring events. Although not addressed in 
this study, colonies comprised of a species mix are likely to impact detection accuracy and may benefit 
from the following actions: increase the nominal spatial resolution of the imagery to improve 
discrimination between the features; append additional training data from the site or increase overall 
model training sample size. It is recommended that for any monitoring event data, a subset of the data is 
labelled for use in model evaluation for quality assurance of that dataset.  

If the error increase exceeds the desired limits (subject to the specific monitoring objectives), the 
following actions are expected to improve detection accuracy: 

• Update the established detector model with a subset of data representative of variations in 
environmental conditions.  

• Data augmentation in machine learning is a process that can reduce detector model sensitivity to 
variations in the target, image quality and environment. Data augmentation increases training 
data sample size and variability by artificially distorting the input training data. Although not 
implemented in the tool delivered, data augmentation can be accessed with some additional 
software code.  

5.2. From demonstration to implementation 

The workflow developed to image and detect Straw-necked Ibis at Mullins Swamp yielded promising 
results due to careful consideration of methods for image capture, species and habitat selection and the 
development of the automated detection software and model. Similar results can be expected for 
subsequent monitoring projects that meet comparable target species and habitat. Sections 6 and 7 
below sets out initial guidelines for data capture and model training to adapt the workflow for candidate 
monitoring projects.  

This project aimed to demonstrate and deliver a methodology for mature off-the-shelf drones, cameras 
and machine learning software to improve nesting waterbird colony population size estimations. The 
workflow presented is accessible to non-expert users. While the technical barriers to adopting these 
technologies have been lowered considerably, some domain knowledge and experience in the design, 
implementation and interpretation is critical for meaningful and reliable monitoring projects.  

The design phase should determine what level of accuracy, error and uncertainty are acceptable for the 
specific monitoring objectives. The variation of all proposed locations and times need to be accounted for 
at this stage. Those factors will influence the data capture parameters such as the nominal spatial 
resolution as it relates to the target species, habitat and environmental factors. Conservatively high 
resolution requirements will inflate the costs of fieldwork, data storage and data processing, while 
inadequate resolution will compromise the reliability of detection and counts. Critically, it should be 
established very early in planning whether these imaging and processing methods are suitable for the 
target species and habitat. 

Personnel performing the data capture will require a combination of technical and ecological knowledge 
on site as immediate problem solving will almost certainly be necessary at the time of capture. Technical 
expertise is needed for sound imaging parameters choices to accommodate the site and environmental 
contexts. Ecological knowledge is needed to determine the colony and imaging extents, to avoid 
introducing unnecessary distress or harm to wildlife, and to take note of behaviours that may have 
consequences on the count accuracy.  
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The data processing phase requires decisions on adequate sample sizes for model training and 
evaluation. Both samples must adequately represent the colony, habitat and environmental variation. 
Interpretation of results needs an appreciation of the accuracy and uncertainties inherent in the data 
quality, field conditions and the model performance to derive meaningful information.  

The personnel involved in designing and implementing the entire workflow to suit the monitoring 
objectives, target species and habitats will require some capacity building. Many of the nuances across 
the workflow can only be gained through trial, implementation and inevitable error. However, the learning 
process could support key monitoring personnel obtaining a high level understanding of the principles 
underlying the components in the workflow. Expert led workshops can be developed to cover the 
fundamentals of drone operation, image capture and the machine learning methods used in the tool. 

We recommend that protocols are developed across the workflow. Protocols for data capture and image 
analysis streamlines planning and implementation, produces consistent and comparable outcomes, and 
optimises adapting to lessons learnt. Protocols setting standard procedures and parameters for typical 
environments and target species need to be co-designed by ecologists, analysts and decision makers.   
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6. Data capture guidelines 
The objective of the drone imaging campaign is to capture images to be used for the automated 
detection and counting of the target bird species. Satisfying the objective encompasses the 
consideration of factors including the visual and behavioural characteristics of the target species, 
responding to dynamic environmental conditions and site accessibility, while complying with relevant civil 
aviation regulations.  

6.1. Civil aviation regulations  

An essential initial consideration in the planning phase is to establish that contracted third party drone 
operators have the capabilities to perform the operations to a high standard. The operator must possess 
the necessary certification, insurance, equipment and skills to perform the intended operations. To 
operate in accordance with Civil Aviation Safety Authority (CASA) regulations, it is most likely that the 
operator must hold a Remote Pilot License, a valid Remote Operator’s Certificate (ReOC) and adequate 
aviation, liability and indemnity insurance. Operators with inadequate certification and insurance cover 
present a potential for reputational risk by association. Additionally, flying drones over publicly held land 
typically require the above certification to obtain permits to operate.  

A regulation that may present a barrier to operations is the requirement to maintain visual line of sight 
(VLOS) of the drone. VLOS regulations are likely to impact imaging large areas or sites with access 
limitation that force setting a take-off / landing base location a great distance from the imaging extent. An 
increasing number of drone operators can operate with extended visual line of sight (EVLOS) and 
beyond visual line of sight (BVLOS) capabilities (Figure 7).  

 

Figure 7: Line of sight regulatory classifications  

 

6.2. Flight planning considerations 

6.2.1. Imaging objectives 
An appropriate imaging campaign includes choosing imaging parameters needed to have enough, but 
not too much, visual information to discriminate the individuals of the target species. Adequate image 
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quality allows for the clear discrimination of individuals in the target species against all objects in the 
image. Some of the factors that influence detection accuracy include: 

• Physical size of the target species  
• Variability in the appearance and size of the target species 
• Mix of species within the colony  
• Texture, shape and markings of target species that discriminate them from non-target species  
• Contrast between the target species and the background substrate (soil, nesting vegetation, 

water) 
• Clear visibility of the whole individual bird with no or minimal obstruction to visibility from 

overhanging vegetation 
• Solar illumination conditions for each monitoring epoch and variability between them  

Adapting the imaging parameters described below can be tailored to the conditions relating to the above 
factors for specific monitoring species and habitats. However, there are real limits to the conditions 
which, once exceeded, would lead to error, costs or harm that exceed acceptable levels for the specific 
monitoring objectives.  

6.2.2. Defining the imaging extent  
The imaging extent will need to be defined after the shape and distribution of the target colony has been 
established leading up to or immediately preceding the monitoring event. The definition of the imaging 
extent should consider the nesting characteristics of the species for the specific colony, habitat structure 
and the monitoring objectives which will require some familiarity with the target species. 

Defining the imaging extent for relatively dense populations in discrete and easily identifiable colonies is 
straightforward. The extents can be defined by ground survey where the necessary coordinates can be 
recorded prior to the drone operator departing to the site. Alternatively, the extent can be established on 
a reconnaissance manual drone flight using the live video feed to record the necessary coordinates.  

More complex scenarios where variable density, species mix and colony location over large extents will 
require greater consideration in the definition of the modelling objectives. Defining these extents may 
require that the drone operator has access to the necessary expertise to assess the trade-offs between 
the drone and camera capabilities, regulatory compliance, ecological characteristics, and monitoring 
objectives. Some cases may be require considering alternatives to achieving coverage of the entire 
colony, such as robust sampling design.  

Although the majority of these issues should be discussed in the planning phase, it is impractical to 
account for all of the realities present onsite that require ad hoc decision making at the time of capture.  

6.2.3. Automated flight mission parameters 
The relevant parameters for specifying the automated mission parameters for image capture are 
ubiquitous for all mapping mission planning software packages. The mission planning software 
computes the flight parameters for the mapping extent and the drone / camera capabilities based on 
user specified inputs relating to of the following parameters:  

• Capture altitude which determines the nominal spatial resolution for the camera and lens focal 
length specifications 

• Image overlap and sidelap  
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6.2.4. Nominal spatial resolution  
Spatial resolution refers to the unit of area covered by a square pixel in an image represented by the 
width or length of the area. In photogrammetry, the orthorectification process ensures that the spatial 
resolution of the imagery is consistent across the orthomosaic. As the images are not orthorectified, their 
spatial resolution is not consistent, varying within and between each image due to geometric distortions 
from the camera and variable terrain. The spatial resolution, also referred to as ground sample distance, 
reported in the automated flight planning parameters are only indicative and are therefore referred to as 
nominal spatial resolution.  

The nominal spatial resolution of the images is a function of the camera resolution, lens focal length and 
the aircraft altitude (further information in this link).  

The appropriate nominal spatial resolution for the target species and habitat will vary as a consequence 
of the factors listed above in Section 6.2.1. No established protocols currently exist to determine the 
necessary resolution for the target species size and discernible features. However, based on the 
success of the Mullins Swamp Straw-necked Ibis demonstration detector model, it can be used as 
baseline for the nominal spatial resolution for the target species. The mean dimensions of the bounding 
boxes used to train the Straw-necked Ibis detector model was ~58 x 40 pixels, or 2,500 pixels for 
imagery with a nominal spatial resolution of 6.2 mm. Consequently, a smaller target species may be 
expected to perform comparably with higher resolution by specifying a lower image capture altitude.  

Overlap and sidelap 

Overlap and sidelap refer to imaging parameters necessary for photogrammetry applications. Overlap 
and sidelap are expressed as the percent of common area captured by adjacent images, which is 
necessary to generate orthomosaics. For this application, overlap and sidelap would ideally be set to 0% 
to capture images contiguously with no overlap or gaps to avoid double imaging or missed imaging of 
individuals. However, the DJI Pilot automated mission planning software minimum is 10% overlap and 
sidelap. Consequently, the processing software developed for this project allows for the cropping of 
overlapping portions of the imagery.  

If aircraft Realtime Kinematic (RTK) Positioning is available, we recommend its use to allow for precise 
relative positioning of imaging locations to avoid over / under capture of overlap and sidelap. 

6.3. Wildlife disturbance risk 

The risks of disturbance to the target species and the habitat it occupies are critical considerations that 
must be addressed in the planning phase of monitoring for each species and habitat. Drone operations 
pose the real risk of stressing breeding and nesting species that may result in considerable adverse 
impacts on the success of the breeding event. The most obvious consequence is the drone colliding with 
birds in flight, either fleeing the site or during normal activity, resulting in harm to the birds and damaging 
the drone.  

Stressing breeding colonies can result in reduced sexual activity and the abandonment of nests during 
incubation. The impacts may range from short lived evasive behaviours that quickly resume normal 
activity to the fleeing the habitat for periods that are long enough to compromise the breeding event 
(Lyons et al, 2018). Moreover, the response behaviour may result in collision with the drone, posing 
damage to the birds and the aircraft.  

Knowledge and evidence the behavioural responses of wildlife to drone activity is sparse and therefore 
difficult to assess. Responses to stress from drone activity can range from immediately fleeing the site to 

https://support.pix4d.com/hc/en-us/articles/202559809-Ground-sampling-distance-GSD-in-photogrammetry
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inducing acute stress that have no visibly observable changes to behaviour (Weimerskirch, Prudor & 
Schull, 2018; Lyons et al, 2018).  

While some risks of disturbance can be evaluated in the planning phase, due to the lack of knowledge 
on behavioural responses for each species, the assessment of disturbance must be monitored during 
the monitoring event by personnel with adequate knowledge. This will include assessing colony 
behaviour prior to, during and following the drone operations. Importantly, the risks should extend the 
consideration of risks beyond the target species to include other wildlife present at the site. It is 
recommended that an evidence-based protocol of behavioural responses to be observed and thresholds 
that trigger the abortion of the drone operation are developed. Additionally, the behavioural response of 
the species present should be included as metadata and published to contribute to the research and 
monitoring community.  

Some of the possible risk mitigation actions include minimising the operational time to reduce the 
potential for disturbance and minimising the proximity of the aircraft to the colony by increasing altitude. 
These can be addressed by selecting appropriate drone / camera equipment. For example, the 
equipment used to capture data for the Straw-necked Ibis (Section 0) can accommodate the use of 
lenses with greater focal length which allows for greater capture altitudes to achieve adequate spatial 
resolution; has camera capture rates of up to three times faster than alternatives; and greater flight time 
to reduce the length of time in flight and the number of flights into and out of the monitoring area. 

Due to the idiosyncratic response of wildlife to drone disturbance and lack of knowledge regarding the 
potential impacts of disturbance, it is strongly recommended that any operations are conducted in 
accordance with the best practices guidelines defined by Hodgson and Koh (2016). These guidelines are 
designed to minimise disturbance of drone flights on wildlife when there is insufficient knowledge to 
make evidence-based decisions. 

6.4. Imaging procedure 

6.4.1. Mission planning 
The method for flight planning will depend on the aircraft used. DJI are currently market leaders for 
consumer and commercial grade drones and support ‘native’ integration of sensors from a range of 
manufacturers. 

DJI currently provide flight planning software that are supported by specific aircraft (Table 2).  

Table 2: Compatibility of DJI flight planning apps with aircraft series  

DJI Flight 
planning 
apps  

Aircraft series compatibility  
DJI Matrice 600 DJI Matrice 300  DJI Matrice 200  DJI Inspire 2 DJI Phantom 4 

DJI Pilot  Yes Yes Yes No Yes* 

DJI GS Pro  Yes No Yes Yes Yes 

* DJI Phantom 4 RTK only  

 

The DJI Matrice M300 equipped with a Zenmuse P1 camera is recommended due to its technological 
maturity, accessibility and advanced capabilities. However, most DJI aircraft (excluding the Mavic 3 
series) are compatible with flight planning / mapping software. The major drawback of using other aircraft 
is the requirement to fly lower and longer to achieve the same coverage and resolution. Coverage and 
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resolution estimates for different platforms, sensors and lenses can be simply calculated using free flight 
planning software to assist with decision making.   

Planning flights on the M300 with the DJI Pilot app is straightforward, requiring user parameters that are 
standard across any drone mapping mission planning software. DJI Pilot allows for an imaging extent to 
be created by interacting with the flight controller touchscreen to draw the boundary. Alternatively, pre-
fight survey delineating the colony extent can be imported as a KML file. Parameters for flight altitude, 
overlap and transect orientation, among others, can be set in DJI Pilot.  

A copy of Table 1 presents the imaging parameters used to capture the data for the Straw-necked Ibis 
demonstration model.  

Area 
Overlap 
and 
sidelap 

Altitude* 
Lens 
focal 
length  

Image 
footprint 

# of 
images 

Data 
volume 

Nominal 
spatial 
resolution 

Flight 
duration 

25 ha 10%  70 m 50 mm 50 x 33 m 205 3.53 GB 6.2 mm 6 mins  

*Altitude refers to the height of the aircraft above ground level (AGL) over the imaging extent. The height 
of the take-off location relative to the imaging extent must be accounted for in the mission plan. 

 

6.4.2. Performing flights 
As mentioned in Section 6.1, it is essential that all flights are performed in accordance with CASA 
regulations. Compliance considerations and exemption submission processing times must be identified 
in the initial planning phase.  

Maintaining situational awareness in surrounding airspace and also on the ground is important to 
complete the flight in a safe manner. Maintaining awareness of birds in the airspace, ensuring pilot is 
able to respond quickly to birds that may be entering into nearby airspace. Having a spotter to monitor 
the airspace for raptors / birds of prey as well as manned aircraft is highly recommended. DJI Pilot and 
DJI Ground Station Pro both contain the ability to pause and resume flight missions in the case of 
another aircraft or wildlife entering the nearby airspace.  
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7. Model training guidelines 
A step-by-step instruction guide to run the object detection pipeline from start to end can be found in the 
‘readme.pdf’ provided with the toolkit.  

The following components of these guidelines provide additional information to plan for and perform the 
analyses. 

7.1. Data preparation 

7.1.1. Setting parameters 
The parameters in the params.yaml file included in the toolkit must be set for each project in order for 
training and inference modules to run correctly. As a starting point, most of the parameters can be left as 
default, however explicit definition of some parameters is required. Each object detection model training 
requires the raw image height and width in pixels be explicitly set according to the sensor used. The 
default image height and width (in pixel number) provided in the params.yaml template are based on the 
DJI Zenmuse P1 camera and will only work for that that sensor. Additionally, the name of the directory 
containing raw images (‘project_name’ in params.yaml) must be specified. It is also recommended that 
the slice height and width are specified as integer fractions of the raw image dimensions. 

From lines 30-42 of the params.yaml, hyperparameters can be altered, although it is recommended that 
they are left on default for at least the first pass through the training module and can be ‘fine-tuned’ if 
necessary. A hyperparameter refers to any of the tuning parameters which influence the way the model 
learns. 

Note: The default location of for input images is relative to the working directory and params.yaml file. 
Absolute paths can also be provided in params.yaml, but require additional manual intervention. 

More details regarding the functionality of parameters can be found inside the params.yaml file. 

7.1.2. DotDotGoose 
DotDotGoose is a free, open source application with graphical user interface used to initially identify 
image portions that contain the target species. It is a required step to filter the image training slices that 
contain any individuals to be labelled and to omit slices absent of individuals. The software enables the 
user to place points on individuals present in the raw input images. Subsequently, DotDotGoose exports 
those points and the position of the individuals relative to the origin of the raw image. The points are 
used by the ‘split_raw_dataset’ module to filter out slices absent of individuals for labelling. This 
process saves a significant amount of user time by avoiding searching through empty slices during the 
labelling phase. 

Before proceeding to the next step, ensure the path of the points (.pnt) file is specified in ‘params.yaml’. 

Running the ‘split_raw_dataset’ module will prepare the raw images into slices ready to be labelled. 

7.1.3. Labelling 
The toolkit relies on the use of Label-Studio to perform the labelling individuals of the target species used 
in the training component. Using alternative image labelling software requires code modification to suit 
its format. Step by step instructions on using Label-Studio for labelling can be found within the 
‘readme.pdf’ instruction guide. 

https://biodiversityinformatics.amnh.org/open_source/dotdotgoose/


Unmanned Research Aircraft Facility                                                                           The University of Adelaide 

Nesting waterbird colony population size monitoring using automated counts on drone imagery 22 

Multiple species within a single training set can be labelled using Label-Studio by adding additional 
classes to the labelling menu. Please note: In the params.yaml the value input for num_classes should 
equal the number of species + 1. The additional class represents the ‘absent’ class to teach the model to 
discriminate the background from the target species. The background information represented by the 
absent class is a default and does not need to be explicitly labelled. 

The quality of the labelling will have a significant impact on performance of the object detector. If objects 
are poorly labelled, e.g. bounding boxes being too large or too small, they may include or exclude 
information necessary for the model to correctly learn. The most important rule is to ensure that label 
bounding boxes fit tightly around the target individual.  

The creation of a labelling reference guide prior to fully committing to the labelling process is strongly 
recommended. The reference guide establishes the standards for labelling personnel in their decision 
making, e.g. whether birds in flight should be included. The reference should include example image 
subsets indicating the extent of the bounding box, objects to include and acceptable variations of the 
object (e.g. juveniles, the level of occlusion by vegetation). Conversely, objects to exclude should also be 
exemplified, e.g. other species. The document is critical to ensure consistency between labelling 
personnel and between monitoring events, especially for labelling hold out data subsets used for 
performance evaluation.  

Once image labelling is complete, the ‘prepare_training_set’ module can be run. This script scans 
through the labels created in Label-Studio and prepares a training set that conforms to the COCO format 
required to train the model. The reformatted labels will then be saved under a new directory (coco-
detection-dataset, as default in the params.yaml file) as well as the image slices. Within this directory, 
the ‘prepare_training_set’ module also includes a sample of empty image slices in the training set to 
reduce the rate of false positive detections. 

7.2. Training the model 

Once a training set has been prepared following the guidelines in Section 7.1, the model can be trained. 
Before running the ‘train_mdba’ module, confirm that params.yaml includes the correct paths and the 
hyperparameter values are filled. Using the default hyperparameters should yield good results, however 
these can be refined if necessary.  

It is possible to change the ratio of training and validation images. The default value (0.2) results in 20% 
of the input dataset being used for validation and 80% for training. The code currently does not allocate 
any of the raw images to a holdout set, so it is recommended to keep some from being ingested into the 
pipeline to evaluate model performance.   

By default, the number of epochs is set to 10. As the model ‘learns’, a loss value is reported after each 
epoch. If the loss value continues to decrease significantly after the 10th epoch, consider increasing the 
number of epochs. The number of epochs determines how many times the training dataset is ‘looked at’ 
by the learning algorithm and can improve model performance. However, if the number of epochs is too 
high, the learning algorithm is susceptible to overfitting. To avoid this, a parameter in params.yaml called 
‘early stopping patience’ has been included to limit the number of epochs if the algorithm stops learning 
(i.e. when the loss function plateaus). 

The output of the ‘train_mdba’ module is a .pth file. The .pth file is a common format used to save 
trained models using the python library PyTorch. The name and location of the model can be defined in 
the params.yaml file on lines 46 and 47. Changing the name of the model may be useful if the user 

https://pytorch.org/features/
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would like to keep multiple versions of the model to evaluate performance rather than overwriting the 
existing model. The specified .pth file is called upon when implementing a trained detector model. 

7.3. Implementing a trained detector model  

A trained detector model can be used to ingest images ‘unseen’ by the model in the training process, 
e.g. images from subsequent monitoring events. This is referred to as inferencing in the field of machine 
learning. The ‘bird_count’ module implements inferencing on new images by providing it with paths to a 
directory of input images and the trained detector model.  

The image overlap and sidelap used in the data capture campaign are required parameters to omit 
detections from being included in the detection count output for each image. The parameter is specified 
in the params.yaml file. The proportion of overlap and sidelap between adjacent images is specified as a 
decimal value (e.g. 10% = 0.1).  

In the process of inferencing, each detection of an object is attributed with a confidence metric of the 
object’s similarity to what it was trained to detect. The lower threshold of the confidence metric is set with 
the ‘confidence threshold’ parameter in the params.yaml file. The default confidence threshold is set to 
0.96. The parameter can be refined to tune the sensitivity to improve the performance, especially for 
models detecting excessive false positives. Refining the parameter is most likely necessary for imagery 
containing landscape or lighting differences. Higher confidence thresholds reduce the number of 
detections and increases the likelihood of false negative detection resulting in under-counting. Lower 
confidence thresholds will increase the number of detections and increases the likelihood of false 
positives in background features resulting in over-counting.  

Data augmentation can improve the robustness of the model when subject to variability in image 
characteristics. Common forms of data augmentation include resampling, warping, rotating and 
modifying colours of the original image slices. The desired outcomes from this process improve the 
detectability of target species under different environmental conditions such as variations in lighting or 
background substrate / vegetation. Although the tool delivered in its current state does not support 
augmentation, the pipeline does contain a template in which common augmentation processes from the 
torchvision library can be implemented with minimal expertise (see 
https://pytorch.org/vision/stable/transforms.html). 

7.4. Evaluating model performance 

Model performance evaluation can be performed by running the detector model on a hold-out subset of 
the data. A hold-out dataset can be any images of the target species that the model has not ‘seen’ during 
the training process. For example, images from the same colony, containing the same target species, 
but not included in the training set. It is recommended that model evaluation is performed for subsequent 
monitoring data that is input into a previously trained detector model.  

The toolkit includes an evaluation module ‘eval_mdba’ which tests for linearity between the human user 
identified counts and predicted counts. The module exports a graph in PNG format with the linear 
regression model and R-squared value for human user vs predicted counts (e.g. Figure 3). 

 

  

https://pytorch.org/vision/stable/transforms.html
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Appendix A  
 

Table 3: Flight and image parameters for all image datasets collected during drone imagery field campaign  

Date and 
time 
(year 
2021) 

Site  Overlap 
and 
sidelap 
(%) 

Altitude  
(m 
AGL) 

Lens 
focal 
length 
(mm)  

# of 
images 

Data 
volume  
(GB) 

Nominal 
spatial 
resolution 
(mm) 

Flight 
duration 
(mins) 

27/09 
1418 

Mid Lake 10 70 35 59 1.29  8.8 7 

27/09 
1427  

Mid Lake 10 / 10 100 35 52 1.09 GB 12.6 3  

27/09 
1456  

Mid Lake 10 / 10 70 50 141 2.85 GB 6.2 7  

27/09 
1554  

Mid Lake  10 / 10 70 35 164 3.78 GB 8.8 5  

27/09 
1615  

Mid Lake  10 / 10 70 50 257 5.52 GB 6.2 8   

28/09 
0930  

Mid Lake  70 / 70  70 35 986 22.0 GB 8.8 23 

28/09 
1016* 

Mid Lake 10 / 10 70 50 205 3.53 GB 6.2 6  

28/09 
1139 

Northern 
Lake 

10 / 10 70 50 233 4.49 GB 6.2 7  

*Image dataset utilised for detection tool development.  




