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Executive Summary 

The Murray–Darling Basin Authority (MDBA) Innovation Sweep is a report 
intended to provide a summary of emerging conservation technologies and 
their potential applications for the ongoing management of the Murray–
Darling Basin (MDB). These technologies have been selected based on their 
advanced development, innovation, and increasing uptake in the fields of 
conservation biology and natural resource management. This report is 
targeted towards on-ground managers of natural areas within the MDB 
seeking to further develop their monitoring toolkit by incorporating cutting-
edge technology and research. 

The MDB is a large system of interconnecting rivers and lakes encompassing 
over one million square kilometres in south-eastern Australia, including the 2 
main tributaries, the River Murray and the Darling (Baaka) River. The MDB has 
significant cultural, environmental and economic value, supporting tourism, 
agriculture, internationally significant wetlands and sites of spiritual heritage. 
The MDBA was established to manage and operate waterways across state 
jurisdictions, with the aim of achieving a healthy working Basin for the benefit 
of all Australians.   

The MDB faces a number of challenges that can be exacerbated by competing 
requirements for water. These include drought, salinity, fish deaths, algal 
blooms, acidic soils, blackwater events and the increasing pressures of climate 
change. Such issues make the maintenance of good water quality and healthy 
ecosystems difficult, particularly when operating on large spatial scales. 
Therefore, this report aims to provide a synthesis of emerging technologies 
that may provide solutions to the challenges of environmental monitoring 
within the MDB at scale and guide proponents towards skilling a workforce in 
these applications via technology-based training. 

To identify emerging technologies and gain insight into their current and 
potential applications, experts from various agencies and institutions were 
engaged to contribute working knowledge of innovations within their 
industry. The results of this Innovation Sweep are a curated selection of 
technologies that are of high relevance and potential for the MDBA. These 
technologies have been summarised in 3 main areas: sensors, data analysis, 
and models (Table 1). Opportunities for managing and sharing the large data 
sets generated by these technologies are also explored.  
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The technologies described in the report present exciting potential pathways 
towards monitoring techniques that are high sensitivity, high resolution, 
automated, and in many cases relatively low cost. These technologies can be 
applied at broad spatial and temporal scales within the MBD to increase the 
power of monitoring efforts and inform future management initiatives 
working towards improved water quality and environmental condition.  
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Table 1 Table of key technologies, their applications for the MDBA and relevant considerations. 

Category Technology Brief Description Examples of Usage Scale of 
Application 

Timeframe of 
Application 

Maintenance 
Requirements 

Skills Required Cost 
Breakdown 
($-$$$) 

Sensors eDNA Isolates trace DNA 
from 
environmental 
samples to inform 
on organisms 
present in the 
environment 

• Detecting 
presence of cryptic 
species in 
waterways  

• Monitoring fish 
spawning events 

• Detecting 
presence of 
harmful organisms 
(e.g. invasive 
species, algal 
blooms, parasites) 

Local 1 day – several 
weeks. DNA 
analysis can be 
performed in the 
field or via 
commercial 
platforms 

Regular sampling 
may be required 

• Wet lab skills  
• Bioinformatics 

$-$$ 

Autonomous 
Platforms 

Platforms and 
vessels able to 
navigate air, land 
or water to 
undertake pre-
planned missions 
using provided 
mission plans and 
logic 

• Autonomous 
surface vessels are 
able to navigate 
waterways and 
survey physical 
and biochemical 
parameters 

• Mobile and static 
platforms can be 
tasked with 
detecting and 

Local and 
Regional – 
scale is 
only 
limited by 
number of 
units 
available 

Fine-scale spatial 
data must first be 
collected to 
develop survey 
paths, and this may 
take several 
months. Survey 
timeframe is 
limited only by 
power source of 
systems.  

Systems must be 
deployed and 
collected 
regularly and 
survey paths 
updated to 
incorporate 
obstacles or 
changes to areas 
of interest. 
Permits and 

• Advanced 
coding and 
data 
processing 
skills 

$$-$$$ 
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responding to 
particular events 

licensing must be 
maintained for 
operation 

Animal 
Tracking 
(passive 
integrated 
transponder 
(PIT) tagging) 

Devices are 
triggered to record 
presence when the 
receiving device 
detects a PIT tag. 

• Record organism 
movements and 
behaviours 

Local Limited only by 
power source to 
receiver and 
lifespan of tagged 
animal 

Receiver devices 
require a power 
source – if 
batteries are 
used, these must 
be replaced 

• Basic training 
in technology 
and data 
management  

• Animal 
welfare 
training  

$-$$ 
(Low-cost 
options 
available) 

Animal 
Tracking 
(satellite 
telemetry) 

Animal is marked 
with unique 
biologging tag 
equipped with a 
satellite 
geolocation sensor. 

• Record organism 
movements and 
behaviours 

Local or 
Regional 

Limited by lifespan 
of biologging tag 

Generates large 
amounts of data 
that needs to be 
“cleaned” to 
eliminate errors 

• Basic to 
advanced 
training in 
technology 
and data 
management  

• Animal 
welfare 
training 

$$ 

Data 
Analysis 

Machine 
Learning-
Based Analysis 

AI technique that 
uses algorithms to 
learn the 
characteristics of 
input data to build 
models that can be 
used to predict 
content in new 

• Automatically 
identify pest or 
threatened species 
in images 

• Classify biomass of 
aquatic vegetation 
in images 

• Use time-series 

Local, 
Regional 
or Basin-
wide 

Data collection 
may take several 
months. 
Developing an 
algorithm can 
require 6-12 
months, while 
training a model 

Continual 
provisioning of 
annotated data to 
increase accuracy 

• Advanced 
coding and 
machine 
learning skills 

• Advanced 
data 
processing 
and 

$$-$$$ 
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data or images. data to recognise 
patterns in 
particular events 
such as fish 
spawning 

typically takes 
several days. 

bioinformatics 
• Ecological 

knowledge for 
image 
annotation 
and curation 

Visual 
Question 
Answering and 
Visual 
Language 
Navigation 

AI techniques that 
can facilitate 
communication 
and commands 
between humans 
and machines. This 
allows machines to 
collect images or 
footage of interest 
and answer direct 
questions about 
the content. 

• Collect images 
of birds and 
conduct bird 
counts 

• Estimate 
vegetation 
coverage 

• Identify features 
of interest in 
images 

• Species 
identification  

Local, 
Regional 
or Basin-
wide 

Data collection 
may take several 
months. 
Developing an 
algorithm can 
require 6-12 
months, while 
training a model 
typically takes 
several days.  

VQA systems 
require continual 
data provisioning 
to improve 
accuracy. VLN 
costs and 
maintenance are 
typically 
associated with 
the procurement 
and running of 
drones.   

• Advanced 
coding and 
machine 
learning skills 

• Advanced 
data 
processing 
and 
bioinformatics 

$$$ 

Data Efficient 
Learning for 
Vision and 
Audio 
Recognition 

Machine learning 
techniques in 
which models are 
trained using 
varying data 
requirements to 
output information 
on the input image 
or sound 

• Identify species 
based on images 
or audio 
recordings 

• Count objects or 
organisms in 
images or videos 

• Search multiple 
images for 

Local, 
Regional 
or Basin-
wide 

Data collection 
may take several 
months. 
Developing an 
algorithm can 
require 6-12 
months, while 
training a model 
typically takes 

The majority of 
investment is 
required in 
collecting the 
data required to 
train the model, 
however 
continual data 
provisioning is 

• Advanced 
coding and 
machine 
learning skills  

• Advanced 
data 
processing 
and 
bioinformatics 

$$$ 
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organisms with the 
same identity 

several days.  required to 
improve accuracy. 

Semantic 
Change 
Detection in 
Images 

Machine learning 
technique that 
compares a series 
of images of the 
same scene or 
object over time to 
identify changes of 
interest 

• Count populations 
and monitor 
demographic 
changes over time 

• Delineate and 
measure wetland 
flooding extent, 
tree death, and 
vegetation growth 
rates 

Local, 
Regional 
or Basin-
wide 

Data collection can 
take several 
months to years, 
depending on the 
timescale of 
interest. 
Developing an 
algorithm may 
require 6-12 
months, while 
training a model 
typically takes 
several days.  

Repeated 
collection of 
data/images is 
required over the 
designated 
timescale. 

• Advanced 
coding and 
machine 
learning skills  

• Advanced 
data 
processing 
and 
bioinformatics 

$$$ 

Models Sequential 
Decision-
Making and 
Reinforcement 
Learning 

Artificial 
Intelligence that 
uses deep learning 
to repeatedly play 
out and optimise a 
scenario and its 
outcomes, 
developing a “best-
practice” policy. 

• Weather and 
rainfall prediction 

• Bushfire prediction 
• Autonomous 

driving and 
robotic navigation 

• Sports strategy 
and coaching 

Local, 
Regional 
or Basin-
wide 

Data collection 
may take several 
months. 
Developing an 
algorithm can 
require 6-12 
months, while 
training a model 
typically takes 
several days.  
 

Continual 
provisioning of 
updated data to 
train the model 

• Advanced 
coding and 
machine 
learning skills 

• Advanced 
data 
processing 
and 
bioinformatics 

$$$ 
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 Advanced 
Hydrological 
Models 

Incorporates 
ecological 
requirements and 
responses into 
hydrological 
models 

• Evaluate and 
interpret 
ecological 
monitoring using 
relationships 
between discharge 
and velocity 
statistics 

Local, 
Regional 

Data collection 
may take several 
months. 
Developing an 
algorithm can 
require 6-12 
months, while 
training a model 
typically takes 
several days.  

Continual 
provisioning of 
updated data to 
train the model 

• Advanced 
coding and 
machine 
learning skills 

• Advanced 
data 
processing 
and 
bioinformatics 

$$ 
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Introduction 

Water managers in Australia have responsibility for large river reaches, 
management of resources and ensuring ecological outcomes from allocation 
of environmental water. The Murray–Darling Basin (MDB), in south-eastern 
Australia, is a natural resource of immeasurable cultural, ecological and 
economic value. However, prolonged periods of drought combined with 
competing requirements for water and the additional pressures of climate 
change have resulted in a number of threats and challenges to the health of 
the MDB (Figure 1). Consequently, the Murray–Darling Basin Authority (MDBA) 
implemented an Environmental Watering Strategy designed to restore 
ecosystem health to the Basin. To determine this strategy's effectiveness and 
track progress towards restoration targets, ongoing monitoring of key 
indicator species and systems is required. 

 

 
Figure 1 Key challenges faced by the MDBA in the management of the MDB, and a summary of the MDB’s 
key values. 

 

Assessing ecological outcomes at scale is challenging. However, technologies 
that can be applied in an ecological context for monitoring and assessment 
have experienced rapid development in recent years. The advent of tools such 
as remote sensing, artificial intelligence (AI) and modelling have transformed 
the way managers approach ecological issues. Monitoring can now be 
conducted at landscape scales with less effort, at a lower cost and with higher 
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resolution than traditional methods. This has the potential to significantly 
improve monitoring approaches and outcomes for large and complex 
environmental systems such as the MDB.  

Emerging technologies and opportunities for adoption 

Technology to collect data is becoming cheaper and more ubiquitous, and 
emerging “techno-ecology” hardware is spawning the next generation of 
ecological data. These physical technologies (Table 1) include:  

● Biologgers 

● Drones and drone-mounted technologies for recording data 

● Autonomous vehicles and data buoys 

● Radio-frequency identification (RFID) tagging 

● Low power networks 

● Peer-to-peer data transfer networks (e.g., used to create smart 
environments to integrate recording arrays of recorders, such as 
camera traps) 

Data from these technologies are recorded at high spatial and temporal 
resolutions, creating large volumes of data that cannot be processed 
manually. Multidisciplinary collaborations are therefore critical to developing 
ecoinformatics approaches to curate, store and analyse these data. 
Technology to process this information is becoming rapidly more powerful, 
more accurate in predictive capabilities and more able to collaborate with 
humans without the need for programming intermediaries. Some examples 
include (also see Table 1): 

● Image classification and labelling (e.g., to species or individuals) 

● Audio classification (e.g., to species) 

● Geospatial image interpretation  

● Natural language interactions with data and AI 

● Machine learning of time series data to predict future outcomes 

● Machine learning to analyse very large numbers of images such as 
satellite images 

● Reinforcement learning to learn winning strategies for environmental 
improvement from simulators 

● Environmental DNA analysis 
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Beyond identifying and classifying measurements into useful data, new 
approaches for quantifying ecological relationships that integrate statistical 
inference and machine learning are developing in parallel. We have assembled 
a multidisciplinary team with expertise at the forefront of these disciplines for 
the Innovation Sweep. 

Data-sharing platform 

Data-sharing is key to extracting the greatest value from the investment into 
collecting the data in the first place. Data-sharing, however, also creates 
challenges around confidentiality and ownership. Single, standardised data 
lakes are one solution, but are expensive and time-consuming to negotiate 
and maintain. Contemporary solutions such as distributed databases and 
federated learning may offer faster, lower-cost solutions to data sharing. 
Options for curating and sharing the large datasets generated by next-
generation ecological technology will be explored in this report.  

Skilling a workforce to adopt and implement technologies 

Technology-based training is critical for the uptake and development of this 
“new ecology”. This Innovation Sweep will map the skills necessary to adopt 
the identified emergent technologies above and identify bottlenecks in skills 
development and educational and professional pathways to resolve them.  
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Objectives 
The purpose of the Innovation Sweep is to form a watch-list of emerging 
technologies that have the potential to be used to monitor ecological 
outcomes of interest to the MDBA at the landscape scale. It is not designed to 
be prescriptive, but instead provides a scope of areas of interest. Each 
emerging technology will be briefly explained and its potential application 
outlined, so that the report can also be used as the initial step towards 
incorporating new technologies into the MDBA’s business. The report will also 
provide insights into the advantages and opportunities of implementing an 
advanced data-sharing system that will enable the large datasets collated by 
these technologies to be readily accessed and shared across the MDBA 
network. In addition, the report will guide proponents towards skilling their 
workforce with the tools and capabilities required to implement these 
technologies on the ground. Ultimately, the end goal of this report is to 
provide a framework to lower the cost of monitoring in the MDB, improve 
data accuracy, inform watering strategies to improve outcomes and make 
data and information more available within the MDBA network and beyond.
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Methodology 
The Innovation Sweep Report identifies and informs on emerging 
technologies in conservation and natural resource management that have the 
potential to be applied in the MDB at scale. To identify these innovations, a 
five-step process was undertaken; discovery, synthesis, consultation, 
evaluation and conclusion (Figure 2). 

 

 
Figure 2 The five-step approach undertaken to complete the MDBA Innovation Sweep. 

 

A scan of emerging technologies was undertaken to identify and shortlist 
those innovations of particular interest or application to the MDBA’s business. 
A synthesis of those shortlisted technologies was then developed, and experts 
from a range of institutions were engaged to provide insight and specialist 
knowledge. Ongoing communication with the target audience of this report 
(managers within the MDBA network) identified the requirements of these 
end-users for emerging technologies. The shortlisted technologies were 
subsequently evaluated for suitability and grouped into 3 categories 
according to their relevant application; sensors, data analysis and models. 
Finally, technical reports containing a brief description of the technology, its 
current uses and future directions, and the potential applications for the 
MDBA’s business, were compiled. To ensure that the Innovation Sweep Report 
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provided relevant and practical information for the MDBA, key pathways for 
each technology were reviewed, including opportunities for adoption in the 
MDB, available platforms for data sharing, analysis and collaboration, and 
requirements for the skilling of a workforce to adopt and implement new 
technologies. 

 

Technologies 
Here follows a summary of the key technologies identified by the Innovation 
Sweep, grouped into 3 categories: sensors, data analysis and models.  

These categories are designed to address each stage of the technological 
pipeline (Figure 3).  

Each summary includes the following;  

● A brief description of each technology  
● SWOT (Strengths, Weaknesses, Opportunities and Threats) analysis  
● Current applications and potential uses in the MDBA’s business  
● Costs and limitations 
● Technological developments 
● Identification of leading experts in the field 
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Figure 3 The technological pipeline of data collection and analysis. 
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Category 1: Sensors 
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An Introduction to Autonomous Sensing 

In recent years there have been a number of new technology applications and 
breakthroughs in sensor arrays, such as camera traps and audio-recorders, that 
are useful for monitoring various environmental factors of interest to the MDBA. 
This may include species such as waterbirds, fish, amphibians, zooplankton and 
phytoplankton, as well as spatial changes in habitat through water inundation, 
riverine and floodplain vegetation and mudflats extents. 

Sensor technologies have been commercially available for many years. However, 
the cutting edge that is relevant to applications at the types of geographic and 
temporal scales that can facilitate conservation outcomes are the improvements 
in existing technologies to produce products that are durable, lightweight, and 
cheap, as well as being power efficient, easy to deploy, element-proof, and 
allowing remote communication. It is here that tremendous gains can be made. 
Wireless sensor networks can expand traditional camera traps to accommodate 
other sensors (e.g., acoustic) with real-time data communication via satellites that 
are driven by low power networks. One particularly promising area may be in the 
deployment of SmallSat or nanosatellite constellations that have the potential to 
yield higher resolution data at 3-5 metres. These high-resolution sensors are 
more relevant to environmental monitoring than those currently available and 
can be deployed at a lower cost. 

There is a myriad of potential applications of technologies with some potentially 
relevant to the MDBA listed in Table 2. The most obvious benefits are the 
potential to deploy sensors at large spatial scales and to record consistent spatial 
data at any temporal scale that was deemed appropriate. The costs will be 
significantly lower than that of human effort and hours for equivalent data and 
will be greatest where there is a need to develop and deploy wireless and/or low 
power networks to power and record data in real-time at scale. The Innovation 
Sweep will evaluate detailed costings and explore the status of technology 
development in these areas for specific biodiversity monitoring applications. 
Most of the base technologies are well developed and tested, so the risks to 
application will be in operationalising deployments and data retrieval at scale. 

  



21 

Table 2 Examples of the innovative technologies that can be applied to monitoring aquatic ecosystems 

Feature Application Technology 

Water 
Accounting 

Measurement of 
inundated area in 
floodplain systems 

Remote sensing and image analysis 
of open water 

Broadscale measurement 
of evapotranspiration and 
plant water use  

Radar and optical remote sensing of 
evapotranspiration and soil moisture 
content 

Connectivity between 
rivers and floodplains 

Remote sensing and image analysis 
of open water showing degree of 
connectivity between rivers and 
floodplains 

Volume of water 
contained in snow pack 

Lidar measurement of snow pack 
depth (difference between height 
with and without snow) 

Mudflat area Measurement of potential 
foraging habitat for 
shorebird species 

Machine learning analysis of remote 
sensing imagery 

Riverine and 
floodplain 
vegetation 

Plant performance in 
response to water regime 

NDVI and hyperspectral analysis, 
onsite cameras and image analysis 

Fish monitoring Fish movement Electronic tags and network of 
sensors 

Fish movement Citizen science and innovative 
reward for return of tags by rec 
fishers 

Fish movement Camera deployed at fish way 
recording fish passage and species 
using image analysis 

Fish movement eDNA 
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Fish health Cameras deployed on fishways 
identifying and recording size/body 
condition of fish using image 
analysis 

 Fish habitat 3D side scanner to evaluate snags, 
structure and fish presence 

Waterbird 
monitoring 

Waterbird abundance Drone imagery with visual sensors or 
paired thermal and visual sensors 
and image analysis 

Waterbird nesting sites 
and abundance 

Drone imagery coupled with 
automated image analysis 

Waterbird body condition Image analysis and machine learning 
to determine body condition from 
photo images 

Amphibian Amphibian diversity Monitor from call with audio 
recording and audio processing with 
machine learning to identify species.  

Zooplankton Zooplankton abundance 
and diversity 

eDNA of samples and comparison 
with a genetic library of known 
species. 

Zooplankton abundance 
and diversity 

Image analysis of microscope 
samples possibly in situ with 
FlowCam 

Phytoplankton Phytoplankton 
abundance 

Image analysis of microscope 
samples 

Phytoplankton 
abundance 

In situ Flow cytometry such as a 
Cytobuoy 

Phytoplankton 
abundance 

In site microscopy and image 
analysis such as a FlowCam 

Cyanobacteria Phycocyanin sensors 
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Data analysis Automation of analysis 
and reporting 

Machine learning 

Automated model run 

Dashboard driven displays 

Alert to breach of water 
quality standard 

Automated alert when a sensor 
detects exceedance of a water 
quality indicator such as low DO, 
high DOC, cyanobacteria 

With the adoption of these technologies, there is a need for the capacity to 
process the ‘big data’ that are generated from these remote sensors (i.e., ‘data 
loggers’) to transform the recorded signals into data. Automated data processing 
pipelines are integral to preserving the efficiencies gained by using remote 
sensor technology solutions for data collection. Developing these methods for 
the specific types of sensor data can transform the technology from simply 
recording signals, to providing data that can be analysed and interpreted. Further, 
these processing pipelines should be considered in the context of the 
development and implementation of federated data repositories for collating and 
sharing the data for analysis, reporting and visualisation. 

 

Environmental DNA (eDNA) 

What is eDNA? 

Environmental DNA (hereafter eDNA) refers to genetic material that is extracted 
from environmental samples such as soil, sediment, water or air. eDNA may 
originate from faeces, hair, skin, or other biological material shed by organisms in 
the environment. Preservation times of eDNA varies significantly depending on 
the conditions the genetic material is exposed to; for example, eDNA may persist 
for several weeks in temperate water and hundreds of thousands of years in 
permafrost. A single environmental sample may contain genetic information on 
entire ecological communities. To extract this information, a polymerase chain 
reaction (PCR) is typically used to amplify any eDNA that may be present, in 
either a single- or multi-species approach using species-specific primers (also 
known as barcoding) or universal primers (also known as metabarcoding). eDNA 
is therefore an effective monitoring method for biodiversity at a landscape scale, 
particularly in freshwater ecosystems. 
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eDNA research has a number of benefits for ecosystem monitoring and 
management (Figure 4). Firstly, it is non-invasive, and can be performed without 
the destructive sampling of organisms or habitats. Secondly, it allows for 
sampling and assessment of multiple organisms with minimal cost and effort. 
Thirdly, eDNA sampling can facilitate the early detection of pathogens and 
invasive species in an environment, allowing managers to plan and carry out the 
appropriate intervention. Finally, it is an effective method of detecting and 
monitoring cryptic species that are otherwise elusive and difficult to survey, and 
so can be more effective than camera trapping and other manual survey 
methods. 

 

 
Figure 4 Summary of the strengths, weaknesses, opportunities and threats of eDNA research. 

 

Current Applications 

eDNA is being used across a range of industries, from fisheries management to 
conservation (Box 1). For example, eDNA has been successfully used to monitor 
the spawning activity of the endangered Macquarie perch (Macquaria 
australasica) (Bylemans et al. 2017), detect invasive species (Furlan et al. 2019), 
and monitor post-release survival of the endangered northern corroboree frog 
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(Pseudophryne pengilleyi) (Rojahn et al. 2018). eDNA is also being combined with 
citizen science to generate Australia-wide data on the presence of platypus 
(Ornithorhynchus anatinus) in waterways (Brunt et al. 2018; Lugg et al. 2018). 
Other recent applications of eDNA include assessing parasite loads in water for 
early disease intervention, mapping soil and marine microbiomes, and 
conducting biodiversity assessments of groundwater systems for Environmental 
Impact Assessments. 

 

Potential Applications for the Murray-Darling Basin 

There are a number of potential applications of eDNA that relate directly to 
management issues faced by the MDBA. eDNA can be used to evaluate species 
and community responses to environmental stressors, including drought and 
pollution. Further, eDNA has proven to be an effective method for the early 
detection of algal blooms, outperforming other techniques such as light 
microscopy and remote sensing. eDNA analysis can be used to identify the 
presence of harmful algae before blooms occur, as well as the presence and 
abundance of algicidal microorganisms that are capable of degrading toxins. 
Pathogens and parasites associated with fish and amphibian deaths can also be 
detected using eDNA, allowing managers to implement response plans in a 
timely manner prior to mass die-off events and preserve fish communities of 
ecological and economic value. In addition, increased concentrations of eDNA in 
the Murray-Darling Basin could be used to monitor fish spawning events. When 
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detecting cryptic species, eDNA often demonstrates higher accuracy than 
conventional monitoring methods. eDNA, therefore, represents a promising 
technique to generate presence/absence data for rare and endangered species in 
the Murray-Darling Basin, such as the pouched lamprey (Geotria australis). eDNA 
can also be used to assess the microbiome of acid sulfate soils, an issue faced in 
the Murray-Darling Basin during times of drought, by quantifying the presence of 
acidophilic microorganisms. Finally, although not currently common practice, 
eDNA may prove useful as an early detection tool for blackwater events by 
measuring the concentration of plant genetic material in waterways. 

Costs and Limitations 

The cost of eDNA sampling varies with the sampling and sequencing effort, as 
well as the target species. Smart et al. (2016) determined a high-cost eDNA 
sampling scenario for a single species monitoring approach to be $86.06 per 
sample, with an additional $1,569.08 for the site setup. By comparison, a low-cost 
scenario for the same approach was determined to be $62.29 per sample and 
$569.08 for site setup. Therefore, it is possible to develop cost-efficient 
approaches to eDNA where necessary. Regardless, in many cases eDNA is 
cheaper to implement than traditional visual sampling methods. 

eDNA is a low-risk approach to environmental monitoring because it does not 
require destructive analysis. The most notable limitations associated with eDNA 
are the limited persistence of eDNA in the environment and the uncertainty 
associated with sampling. It is difficult to confirm the “absence” of a species, as 
the genetic material may simply have been missed during sampling. However, 
these limitations can be reduced by increasing sampling effort and combining 
eDNA with other monitoring techniques. 
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Technological Development 

There have been several technological advances in recent years that have made 
eDNA sequencing faster, cheaper and more convenient. Recent improvements in 
next-generation sequencing (NGS) technologies, including the establishment of 
commercial platforms (e.g., Illumina, Diversity Arrays Technology, Roche), have 
made the sequencing of large genetic datasets much more accessible and 
affordable for ecologists (Shokralla et al. 2012). Notably, portable sequencing 
devices are now available that can be taken into the field and perform 
sequencing at the source site (Tosa et al. 2021). Oxford Nanopore Technologies’ 
MinION (starting at ~$1,400 AUD) can be plugged into a laptop or PC, while the 
company’s alternative product, MinIONMk1C (starting at ~$6,700 AUD) is an all-
in-one device. Researchers can load and sequence samples in real-time, as soon 
as they have been collected, drastically reducing processing time and negating 
the need to store and transport samples. Reducing sequencing effort further, 
researchers have recently developed a method of passive DNA filtration that can 
occur directly in the water column without the need to filter samples after 
collection. Automated monitoring stations designed to collect eDNA samples and 
quantify species diversity are also being designed, but are not currently 
commercially available. 



28 

Key Experts  

In Australia, a number of organisations are working on refining eDNA techniques 
and applying them to research programs. For example, EcoDNA 
(https://www.ecodna.org.au) is a Canberra-based initiative that has used eDNA in 
a number of aquaculture and conservation research programs. Similarly, 
EnviroDNA (https://www.envirodna.com), a consulting company based in 
Melbourne, have combined eDNA research with citizen science to conduct 
biodiversity assessments of waterways and monitor cryptic species. The Australian 
Microbiome Project (https://www.australianmicrobiome.com) is currently using 
eDNA to map marine and soil microbiomes. Researchers are also employing 
eDNA to assess the biodiversity of groundwater systems, which was previously 
extremely difficult to quantify, to inform Environmental Impact Assessments. 

  

https://www.ecodna.org.au/
https://www.envirodna.com/
https://www.australianmicrobiome.com/
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Autonomous Platforms  

What are Autonomous Platforms? 

Autonomous platforms are platforms that are able to navigate and undertake 
pre-planned missions using provided mission plans and logic (such as obstacle 
avoidance and pre-loaded survey paths) combined with sensors and instruments 
to provide automated survey systems. These platforms include aerial drones 
(Unmanned Aerial Vehicles (UAV)), autonomous boats (Autonomous Surface 
Vessels (ASV)) and underwater vehicles (Autonomous Underwater Vehicles 
(AUV)). Of these, drones are now commercially available and fully operational 
while AUVs are still mostly in the development phase for riverine systems. ASVs 
are somewhat in-between these stages, as the components are all individually 
proven (control, navigation and sampling/surveying) but there are few 
commercially available systems. This makes ASVs a key area to invest in, as they 
could bring new capability into the management of river systems and would 
allow for new types of outcomes. 

The platforms act as a force multiplier, allowing surveys to be undertaken in more 
places, more often (Figure 5). Autonomous platforms therefore create the 
potential for continuous surveys of long river systems to be undertaken, allowing 
for better detection of issues such as low oxygen events, run-off, and changes in 
river profile with minimal user intervention. The systems increase in scale simply 
by having more units. Mobile platforms can be linked to static monitoring 
stations to give a more complete picture of the river system, and platforms can 
be tasked with responding to particular events, such as floods or changes in river 
levels. Systems can work at night and in conditions that may be unsuitable for 
people, such as areas with marine pests. Sonar-based river profile surveys, for 
example, can be undertaken at night. A series of configurable platforms allows for 
a range of responses to be quickly deployed in response to events as they unfold. 
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Figure 5 Summary of the strengths, weaknesses, opportunities and threats of Autonomous Platforms. 

 

Current Applications 

ASVs have been employed for dam monitoring, either for water quality or for the 
extent and depth of the dam and resulting water levels. Other ASVs have been 
used to monitor and manage the marine environment (Box 2). Further, a number 
of studies (e.g., Dunbabin and Grinham 2010; Bin Mat Idris et al. 2016) have 
demonstrated the utility of automated platforms in undertaking routine surveys 
over large areas with the potential for results to be analysed in real-time, allowing 
for reactive management of events. 

Potential Applications for the Murray-Darling Basin 

Automated platforms present several opportunities for deployment in the 
environmental monitoring of the Murray-Darling Basin. An ASV could undertake 
regular automated surveys of large stretches of rivers where navigable waters 
exist and survey for basic biochemical parameters such as temperature, turbidity, 
salinity, dissolved oxygen, and water flow. In areas that are not frequently 
trafficked, these surveys could be done on a routine and fully automated basis. In 
areas with regular traffic, more restrictive surveys would need to be done to 
ensure the safety of other watercraft. It is possible to build fully automated self-
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charging platforms that could undertake entire river surveys with multiple 
recharge points as required. Further, the platforms could be configured so that as 
real-time data is collected, any unusual or significant results are transmitted to 
the appropriate authorities, allowing for real-time event detection and 
subsequent response. A range of sensors can be fitted to autonomous platforms, 
such as bio-chemical, optical and imaging, including current metres and sonar 
systems. 

 

 

Costs and Limitations 

A number of commercial autonomous platforms are currently available (e.g., 
https://www.ysi.com/hycat). However, these systems are a combination of 
prototype and early commercial systems, and are therefore costly and only 
partially operational. Opportunities exist for bespoke platforms to be developed 
with a total product cost of < $50K given the currently available components, and 
this would allow for multiple units to be deployed at any one time. 

The main risk associated with autonomous platforms is that of interference with 
other river traffic, and the possibility that a platform may become stranded or go 
off course. The latter can be dealt with by monitoring systems and using existing 
navigation data to ensure the platform stays within navigable waters. Gaining 
regulatory approval for autonomous platforms operating around traditional 
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traffic is an additional consideration, but there is ongoing work to facilitate this 
(see: https://tasdcrc.com.au/). 

Regulatory compliance of autonomous platforms is managed from a variety of 
stakeholders from the Civil Aviation Safety Authority to location specific Parks 
management authorities. The regulatory framework is in a state of evolution and 
so permits, licensing and compliance requirements must be considered as part of 
introducing these platforms into operations. 

There is a large interest in the adoption of autonomous platforms, and ASVs in 
particular. The components of these systems exist and are field ready; therefore 
the path to uptake and use is relatively simple. A number of water authorities are 
already interested in their applications (e.g., SEQ Water). Currently, uptake is 
limited to water authorities that manage restricted waterways such as dams, as 
the regulatory framework for open river use is still under development. 

 

Technological Development 

As all of the components (platforms, control systems, navigation systems and 
instruments) for autonomous platforms currently exist as mature systems, the 
only real development required is the packaging of these components into a 
functional system that meets regulatory approval. Most of this development is 
currently in the research and university sector, but there is also development 
underway in defence as well as the commercial arena. 
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The Australian Institute of Marine Science (AIMS) is undertaking a parallel 
approach for a coral reef ASV and has undertaken an Expression of Interest round 
under AUSTender. A second round will be undertaken in early 2022, with the 
delivery of the first platform scheduled for late 2022. This may be a development 
pathway that the MDBA can follow, as although the needs of the organisations 
differ, the basic requirements will be similar. Modelling by AIMS has shown that 
autonomous platforms allow work to be done on reef surveys in parallel – the 
platforms undertake some tasks, while the human team contributes the value-
add work, for example, allowing work to be done in areas with marine pests. 
Autonomous platforms are a critical pathway to scaling the work required in 
order to meet the needs of organisations working across large spatial scales.  

 

Key Experts 

Key experts in autonomous platforms in Australia include AIMS, Queensland 
University of Technology (QUT), Defence Science and Technology Group, the 
Australian Defence Force, CSIRO’s Data61 initiative, and the Australian Centre for 
Field Robotics. 
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Animal Tracking Technology 

What is animal tracking technology? 

The process of remotely tracking animals in the wild provides highly valuable 
information on spatial ecology, and is a key method to inform wildlife 
management. Recent advances in GPS, radio- and acoustic telemetry technology 
have allowed wildlife managers and ecologists to collect movement data for a 
diversity of species (fish, amphibians, reptiles, birds, mammals) at a range of 
spatial and temporal scales. Tags are becoming smaller and more lightweight 
while simultaneously increasing in accuracy and performance. These technologies 
are capable of generating huge amounts of data on the movements of a tracked 
animal, thereby providing precise and valuable insight into the movement, 
habitat use and behaviour of individuals across terrestrial and aquatic ecosystems 
(Figure 6).  

 
Figure 6 Summary of the strengths, weaknesses, opportunities and threats of Animal Tracking. 
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Current Applications 

One example of this type of high-throughput animal tracking technology is 
passive integrated transponder (PIT) tagging. PIT tags are electronic microchips 
with unique digital identification codes that are typically implanted into animals 
subcutaneously or in the peritoneal cavity. PIT tags are inactive until activated by 
a reader (which may be a handheld scanning device or a remote system installed 
in the environment), at which time the tag transmits its unique identification code 
and the presence of an individual can be recorded. The technology was designed 
for fisheries research and management, but its applications have since expanded 
to terrestrial wildlife, livestock and veterinary purposes, and even the live animal 
trade. PIT tags can now be produced as small as ~8 mm in length and thus may 
be used to monitor the movements of small animals, including invertebrates (e.g., 
Foote et al. 2018). 

In aquatic environments, acoustic telemetry is commonly used to investigate the 
spatial ecology of fishes and marine mammals. Tags come in various sizes and 
battery lives and are either implanted into animals or tethered externally. The 
tags emit a sub-audible ping with a unique identification code that is recorded if 
within the range of an acoustic receiver deployed in the environment. Individual 
projects typically deploy ‘arrays’ of receivers in a strategic manner to address 
specific hypotheses related to animal movement. The rapid uptake of this 
technology has led to the deployment of large communal arrays of receivers in 
certain locations to bolster individual projects and streamline the sharing of 
acoustic data. In recent years, acoustic telemetry has developed beyond a means 
of investigating movement, to facilitating investigations of physiology and 
behaviour. Tags can now be coupled with sensors for monitoring environmental 
conditions experienced by animals (e.g., pressure (depth), temperature, dissolved 
oxygen) and accelerometers to measure the speed of acceleration during certain 
activities (e.g., foraging).   

Radio-telemetry is a further technology commonly employed for tracking animal 
movements in terrestrial and freshwater environments. As per acoustic tags, radio 
tags come in various sizes and battery lives and are either implanted into animals 
or tethered externally. The tags emit radio waves that communicate information 
to nearby reader devices, which can be fixed remotely in the environment. 
Alternatively, animals can be tracked manually by researchers using a radio 
receiver and antenna. In terrestrial environments, signals can propagate over 
large distances (kms), making the technology suitable for tracking wide-ranging 
animals. 
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On a larger scale, satellite telemetry, which marks an animal with a unique 
biologging tag equipped with a satellite geolocation sensor, can be used to 
accurately track the movements of animals across large distances using GPS. This 
technology is particularly useful for monitoring highly mobile species across vast 
land- and ocean-scapes (e.g., migratory birds, pelagic sharks and marine 
mammals) and understanding long-term patterns of habitat use (Box 3).  

 

Potential Applications for the Murray-Darling Basin 

Animal tracking using high-throughput technologies presents a range of 
opportunities for application in the MDBA’s business and, indeed, is already 
being applied. Due to the wide range of spatial and temporal scales at which 
these technologies can operate and, indeed, the small size and lightweight 
tracking devices currently available, most species of interest can be tracked. To 
date, radio- and acoustic telemetry have been used to investigate the movement 
of a range of fish species and generated significant new knowledge, including 
identifying key migration periods and relationships with hydrology and the 
impact of flow regulating infrastructure on movement. This information has 
directly influenced site, state and basin-scale management, notably the delivery 
of environmental water and remediation of barriers to movement. Additionally, 
the MDBA is the custodian of a ‘Basin-scale’ array of acoustic receivers that 
supports various fish-related investigations across the basin.  



37 

PIT technology is also currently used in parts of the MDB and has assisted with 
MDBA-funded research and river management. All fishways on the main channel 
weirs of the River Murray have PIT readers installed that have been used to 
monitor fish movement and passage through fishways. 

For radio-telemetry, acoustic telemetry and PIT technology, the majority of 
studies have predominantly focused on adults of large-bodied fish species (e.g., 
adult length typically >300 mm). The development of small acoustic and PIT tags 
now presents an opportunity to investigate the movements of juvenile fish and 
potentially adults of small-bodied species (adult length typically <100 mm). 

Despite the large spatial scale of the MDBA’s operation, the movement of bird 
and mammal species could also be effectively tracked using satellite telemetry, 
with some applications already occurring in some ecosystems in the MDB, such 
as the Coorong.  

Costs and Limitations 

The cost of PIT monitoring lies predominantly in the monitoring system; PIT tags 
themselves are typically low cost, around $4-5 each, while station monitoring 
systems can cost ~$25-200k depending on the complexity. Acoustic tracking 
tags, meanwhile, can cost $350-450 each, while the receivers are priced at around 
$1700-2000. Similarly, radio tracking tags also cost $300-400 each, but the 
readers can reach $25-35k. 

Although the large amount of data generated by high-throughput animal 
tracking technologies has many benefits, it can also present challenges to wildlife 
managers. Short tracking intervals and high temporal resolutions can increase 
location error, which may introduce uncertainty. This may be overcome by 
“cleaning” the data - inspecting the data and removing outliers. Performing this 
task manually on large datasets is difficult and time-consuming, but the 
application of an automated process using protocols and models can assist here.  
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Technological Development 

Tracking and bio-logging devices are becoming smaller, lighter, more powerful 
and more efficient every year, whilst improving in capacity to gather 
environmental and physiological data in association with movement data. This 
has broadened the potential applications of these technologies. It is now possible 
to track the movement of small species, such as invertebrates. Progress is also 
anticipated in the field with the combination of data-rich movement and 
behavioural studies, and analysis of this information in response to environmental 
factors and climatic change.  

Key Experts 

Key experts in Australia on advanced animal tracking methods include Dr Rowan 
Mott and Dr Misha Jackson, University of Adelaide, Chris Bice and Dr Leigh 
Thwaites, South Australian Research and Development Institute (SARDI), Dr Jason 
Thiem, NSW Department of Primary Industries (Fisheries), Wayne Koster, Arthur 
Rylah Institute, Heather McGuiness, CSIRO, and Karl Pomorin, KarlTek. 

 

 

 



39 

 

 

 

Category 2: Data Analysis 
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An Introduction to Data Analysis 
Analysis of large and complex datasets has become far more achievable in recent 
years with the advent of increasingly accessible high-powered computing 
technology. Wildlife researchers and managers can now harness bioinformatics 
platforms to collect and analyse many types of data, including imagery, 
genomics, audio and movement. Excitingly, artificial intelligence and machine 
learning technologies present opportunities to process massive amounts of data 
in a highly sophisticated manner, at a lower cost and effort than manual analysis 
previously allowed. With the large datasets now being generated by remote 
sensing technologies, the uptake of these analysis tools is a natural progression 
for environmental managers. 

Commercial platforms for machine learning and artificial intelligence are 
becoming more readily available and more affordable. In most cases, there 
remains a need for skilled users to further develop and “train” this software to fit 
the desired purpose. However, once harnessed, these data analysis platforms 
present many promising avenues for environmental monitoring at a landscape 
scale through tools such as object identification, pattern recognition and visual 
question answering. 

Given the rapid advance of data analysis technologies in recent years, and the 
predicted development in speed, scope and accuracy in the future, it is an ideal 
time to integrate machine learning, artificial intelligence and other advanced 
bioinformatics pipelines into the MDBA’s business. Potential applications of this 
technology at the landscape scale include monitoring the extent of vegetation or 
water bodies, monitoring change in vegetation over time, estimating the biomass 
of organisms, and identifying organisms to species level. 
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Machine Learning Based Analysis 

What is Machine Learning Based Analysis? 

Machine learning is a branch of artificial intelligence that can ‘learn’ the 
characteristics of the input data to build models that can be used to predict the 
content of unseen data or images. This is mostly applied to imagery, but can also 
be applied to time-series data, sound data and other media. For images, it can be 
used in 2 ways; object identification and scene classification. 

Machine learning models are trained to recognise an object or pattern by 
exposing them to thousands or even millions of images to‘learn’ the 
characteristics of the object. The accuracy of the models to correctly identify 
objects in previously unseen images is directly related to the number and variety 
of images used to teach the model. The application of machine learning is, 
therefore, directly related to the number, quality and type of images used to 
generate the model, and so image libraries are the new ‘gold’ in developing and 
applying. 

As it gets easier to collect data from cameras, automated instruments and data 
capture systems, the problem then becomes how to analyse this. Scaling the data 
collection only moves the problem to the analysis side. Machine learning is 
currently the only analysis method we have that will also scale and so it is the key 
technology piece in scaling for far-reaching analyses (Figure 7). 

 
Figure 7 Summary of the strengths, weaknesses, opportunities and threats of Machine Learning Based Analysis. 
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Current Applications 

There is little historical application of machine learning given that this is a 
relatively new area (although building on many decades of work). It is currently 
used in a range of day-to-day applications, including internet search engines and 
mobile apps and functions such as voice recognition. 

Potential Applications for the Murray-Darling Basin 

There are 3 potential applications of machine learning to environmental 
monitoring: 

• Object Identification – automatic identification of objects of interest 
including pest species, economically important species, disease, invasive 
species and other environmental indicators, as well as vessels and other 
river traffic and illegal activities such as trespass and fishing (see Box 4). 

• Scene classification – automated classification of imagery for per cent 
cover of the major benthic forms, biomass estimates of aquatic vegetation, 
automated length and size estimates of fish and so on. 

• Pattern recognition – using time series data, such as monitoring data or 
other data, to recognise patterns in the data that represent particular 
events, such as linking individual station rainfall patterns to potential flood 
events or environmental data to spawning events. 

 

Of these, the best developed are the object identification and image classification 
applications; the development of complex pattern recognition is still an area of 
active research. 

Machine learning can be applied as an adjunct to traditional methods. One 
current use in marine monitoring is to classify benthic images for per cent cover 
of the main benthic forms. Initially, machine learning was used to filter out certain 
image classes (mostly abiotic such as sand) to reduce the number of images 
analysed by hand. Now that the models are more robust, the computer-
generated identifications are subject to human quality control (QC) with a focus 
on the areas where the models get confused or where the identification accuracy 
is low. This way, the human simply does a QC pass over the computer-generated 
values, reducing the human work to around 30% or less than a traditional 
workflow. As the models improve, this will reduce to the point where only a 
cursory QC analysis is required. At this point, the analysis can scale in sync with 
the scaling of the collected data. 



43 

 

  

Costs and Limitations 

Key to the application of machine learning is the collection and curation of image 
libraries of the objects of interest. Strategically, it is worth investing in developing 
image libraries now in the recognition that any machine learning work in the 
future will need these. This can be done by harvesting existing imagery, using 
citizen science to collect new imagery or sponsoring collection programs. Images 
need to be annotated (the objects of interest identified in each image including 
the location within the image) and curated so that there is a level of assurance in 
the images. Modelling and simulation technology can be used to support 
extending the value from existing image libraries such as gaming engines (e.g., 
Unreal Engine or Unity). The importance of quality curated image libraries cannot 
be overstated and typically is the main limiting factor in developing machine 
learning models that deliver the required level of accuracy. 

Even though there are many off-the-shelf machine learning services available 
(e.g., Microsoft Azure Custom Vision, Google Vertex AI, Amazon Web Services, 
IBM Watson, etc.) and most of the software for implementing machine learning is 
free or open-source, there is still a need to fine-tune the models to deliver the 
required outcomes. This means that there is a need to internally upskill, or 
partner with an external agency, to ensure the machine learning is applied 
correctly to the problem. While machine learning is sold as a ‘black-box’ service, 
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the reality is that some in-house understanding, or access to this, is required to 
implement it. 

The application of machine learning via the main providers is relatively 
inexpensive but does typically involve the storage and processing of large 
numbers of images. The expectation is that the machine learning will lead to 
efficiencies in existing manual methods and so may lead to cost savings. 
Applications of machine learning by the Australian Institute of Marine Science, for 
example, have reduced the time for manual image analysis by 30%, and this is 
expected to increase as model performance increases. Machine learning should 
therefore deliver a net cost saving. 

Machine learning is not a magic solution to scaling data analysis. The methods 
work as well, in general, as an inexperienced person and only with a lot of work 
and test images can it get close to what an expert can achieve. Typically, machine 
learning can correctly identify an object in an image given enough test images to 
a confidence of 85-90%. For many applications this level of data confidence is 
enough, but in others, such as compliance, this may not be enough. In these 
situations, supplementary human checking can be used with the automated 
analysis to deliver a more accurate result. 

 

The main issues with adoption are two-fold. The first is changing existing manual 
analysis procedures to semi or fully automated ones, and the subsequent 
implications for the quality of the data and the resources currently allocated. The 
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second is the degree to which custodians, clients and stakeholders will trust, use 
and value data that is generated in full, or in part, by computer models versus 
human-generated data. How the users of the data deal with computer analysis 
versus human analysis will vary from domain to domain, but the potential impact 
of this should not be understated. 

Technological Development 

At a superficial level, a basic machine learning system can be set up with a set of 
training images and a provider such as Microsoft or Google. With a few thousand 
images this will generally give a result in the 70-75% accuracy range, depending 
on the problem. Achieving better accuracy will require tuning the models for the 
particular problem, which needs either in-house expertise or partner expertise. 

A suggested development methodology is to do a proof of concept with either a 
generic provider or a technical partner, such as a university or AI provider. Once 
the level of accuracy is understood and any issues identified, then it is 
recommended that a close partnership with an AI provider be developed. This 
partnership will further develop the model and then develop software and 
systems to implement it as a workflow in close consultation with the custodians 
of that workflow. Machine learning is a rapidly changing area, and so it is 
recommended that a continued relationship to domain expertise be developed 
either via in-housing of resources or via those of an external partner. 

Key Experts 

Key experts in machine learning in Australia include the Australian Institute of 
Machine Learning (AIML) and CSIRO’s Data61. 



46 

Visual Question Answering and Visual Language Navigation 

What is Visual Question Answering and Visual Language Navigation? 

Visual Question Answering (VQA) and Vision-Language Navigation (VLN) are 2 
kinds of artificial intelligence techniques that allow humans to communicate with 
and command robots/machines in natural language. VQA enables a 
computer/robot to answer a natural language question regarding a given image, 
e.g., “How many people are there in the image?” and “Is there a red car in the 
image?”. The questions can be unique questions that the computer has not been 
trained on. The answer is usually presented in the form of a few words, a short 
phrase, such as “4 people” and “Yes”. From the data perspective, VQA methods 
fall into image-based and video-based methods. As the term suggests, image-
based VQA handles questions regarding an image and video-based VQA handles 
questions regarding a video. From the question type view, VQA methods can 
handle (1) general questions without providing candidate answers, such as “how 
many …”; (2) knowledge questions that can only be answered using common 
sense, such as “how many girls are there in the image?” (3) embodied questions 
that require a robot to explore an environment in order to give the answer.  

VLN techniques equip robots or embodied devices (e.g., drones) to navigate to a 
target location according to human instructions. Existing VLN algorithms can 
handle 4 types of instructions:  

• Detailed indoor instructions, such as “Go along the hallway and turn left at 
the round table, then stop in front of the TV”.  

• High-level indoor instructions, such as “Bring me the blue cushion in the 
living room”.  

• Dialogue instructions that allow embodied devices to ask questions when 
they are uncertain about decisions.  

• Detailed outdoor instructions, such as “Go with the flow of traffic, at the 
first traffic light turn left …”, using fine-grained reference objects rather 
than an exact address input as required by GPS.  

Overall, these cutting-edge techniques can play important roles in our intelligent 
daily life. 

VQA is a more flexible approach to using machine learning to analyse images and 
related data compared to traditional machine learning approaches that require all 
of the questions to be added up front for training. The VQA approach gives 
managers the ability to ask the questions they thought of before training a 
computer vision system, but also enables additional questions to be answered 
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without additional training. This technology would give the MDBA a highly 
flexible ‘situational awareness’ tool to quickly ask questions about large datasets 
without the need for specialist input or re-training machine learning systems 
(Figure 8). 

VLN reduces the need to train humans in how to manually control drones, and 
enables drones to be able to operate in dangerous situations such as bad 
weather. 

 

 
Figure 8 Summary of the strengths, weaknesses, opportunities and threats of Visual Question Answering and 
Visual Language Navigation. 

 

Current Applications  

VQA has direct applications to assist visually-impaired users of media, and to 
improve image retrieval systems (Box 5). VLN has recently been proposed as a 
method for new and improved approaches to automatic wayfinding in cities. 
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Potential Applications for the Murray-Darling Basin 

VQA can be used for visually and flexibly interrogating databases of images 
(camera traps, satellite or drone images, photopoints), without needing to finalise 
all the questions in advance. The sorts of questions that can be asked of images 
or image libraries include: 

● “show me all of the images with birds in them”,  

● “label each of these images with how many pelicans there are in them” 

● “estimate the proportion of wetlands covered with growing vegetation” 

● “identify all of the dams in this image/image library” 

● “would we expect a fish spawning event in the Lower Murray in the next 3 
months?” 

● “list all of the wetland birds that can be identified in this image library” 

As well as images, other related datasets can be included in the training, which 
increases the capability of a VQA system – allowing questions to be asked that 
require both images and other explicit knowledge. 

VLN can be used to direct drones to collect images via voice control, for example: 

● “fly along the river and take 10 photos every second” 

● “fly over that floodplain and record video of the whole area” 
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Costs and Limitations  

For a VQA system, the main costs are collecting the data (satellite images, drone 
images, camera traps) and developing a good set of training questions. Assuming 
this is in place, it may cost in the order of $100,000s to develop a prototype 
solution. There is a cost-benefit trade-off in collecting more images and training 
the system to become more accurate which cannot be answered here. The most a 
system might cost to be able to accurately answer management questions about 
the ecology of the Murray–Darling Basin (without image acquisition costs) would 
be millions of dollars and no more than $5M. Once established, the only 
additional costs for a VQA system would be to collect more data and retain the 
system to become more accurate. These costs cannot be estimated in advance 
and could range between $10,000s and millions of dollars, depending largely on 
data acquisition costs. There are no significant risks other than the degree of 
accuracy. 

For VLN, the costs of developing relatively simple visual navigation tools will be in 
the order of $100,000s. The ongoing costs relate to the drone itself and taking a 
drone out into the MDB environment. The risks of this technology include 
interactions with humans, wildlife, infrastructure and livestock when allowing 
drones to self-navigate. 
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Technological Development  

This is a fast-moving area of technical development, and VQA and VLN are likely 
to become orders of magnitude more flexible and capable over the next 5 years.  

 

Key Experts 

There are several prestigious experts in the related techniques within Australia. 
Specifically, the experts include: Qi Wu (The University of Adelaide), Stephen 
Gould (Australian National University), Yuankai Qi (The University of Adelaide) 
and Xiaojun Chang (RMIT University).  
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Data Efficient Learning for Vision and Audio Recognition 

What is Data Efficient Learning for Vision and Audio Recognition? 

Vision and audio recognition aim to extract meaningful information from images, 
videos, and audio. For example, vision recognition can be used to identify objects 
at the image level (i.e., image classification), at the bounding box level (i.e., object 
detection), or at the pixel level (i.e., segmenting objects). Similarly, we could also 
use the audio signal as the input and output information like the species of a 
particular animal. Although the applications and purposes of various vision and 
audio recognition models are very different, they follow a general pipeline called 
supervised learning. In standard supervised learning, a model is "trained" from a 
set of training data that comprises input data (e.g., images, audio recordings) and 
the ground-truth output (e.g., class label of the images or bounding box of 
objects). Usually, a large amount of training data, ranging from a few thousand to 
a million samples, are needed to build a recognition model with reasonable 
performance. However, this requirement is not always affordable, and for some 
applications collecting annotated data can be quite expensive.  

Data efficient learning provides a potential solution to the above issue, and to 
similar limitations on systems training identified in the previous section on VQA 
and LVN. The concept of data efficient learning encompasses several techniques 
in machine learning. Among them, transfer learning, semi-supervised learning, 
and unsupervised representation learning are the most promising for 
environmental management. With transfer learning techniques, it is possible to 
use the rich annotation data from a related problem to help build a machine 
learning model for the target problem, reducing the number of annotated target 
images required to fine-tune the resulting model (Box 6). For example, a publicly 
available image database of one bird species could be used to build a base 
model for a related species, thus requiring only hundreds of images of the target 
species to build an effective model. 

Semi-supervised learning is based on the fact that the unannotated samples, such 
as images, video, or audio recordings, are relatively easy to obtain, but their 
annotations are expensive to collect. Thus, semi-supervised learning will use a few 
annotated samples and a large number of unannotated samples to jointly teach 
or develop a machine learning model. The state-of-the-art semi-supervised 
learning methods show that using only 10% of the annotated training samples 
can achieve similar performance as using 100% annotated training samples in 
supervised learning. Unsupervised learning tries to learn the main features from 
the unannotated data without knowing the required features. The learned 
representation can then be applied to a wide range of tasks, called downstream 
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tasks. With a good feature representation, the need for many annotations is 
reduced. A summary of those 3 paradigms is presented in Table 3. 

 

Table 3 Summary of data efficient machine learning paradigms. 

Method  Learned representation 
requirements  

Downstream task 
requirements  

Transfer learning Annotated training data 
from other applications, 
called source data 

A few annotated target 
problem data 

A lot of source data 
samples 

Semi-supervised learning Unlabelled target 
problem data 

A few annotated target 
problem data 

A lot of unannotated 
target problem data 

Unsupervised learning Unlabelled target 
problem data 

A few annotated target 
problem data 

A lot of unannotated data 
(not necessarily from the 
target problem) 

  
The benefit of using data efficient machine learning is to have a more efficient 
way of leveraging the data (Figure 9). It can significantly reduce the number of 
annotations needed for building a machine learning model for environmental 
monitoring. More specifically, 

● It can reduce the cost of collecting annotated data. 

● It can accelerate the development of a prototype system since data 
annotation can be time-consuming.  

● Given the existing data annotation, data-efficient learning can potentially 
boost the performance of the current model by further leveraging other 
data sources or unlabelled data.  
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Figure 9 Summary of the strengths, weaknesses, opportunities and threats of Data Efficient Learning for Vision 
and Audio Recognition. 

Current Applications  

An example of the usage of data-efficient learning is the application of semi-
supervised learning to conduct crowd counting using images or videos. 
Additionally, unsupervised machine learning was used to classify a pelican’s 
movement as either migrating or foraging without the use of labelled training 
data (Wang 2019). 

Potential Applications for the Murray-Darling Basin 

Vision and audio data-efficient learning can be used as an alternative strategy for 
building environmental monitoring machine learning systems to the traditional 
supervised learning strategy. Based on the existing literature, the data-efficient 
learning approach has been successfully applied to problems like image 
classification, object detection, image segmentation, object counting, and audio 
recognition. Here follows a list of examples relevant to environmental monitoring: 

● A system that can identify birds/fish species from audio recordings  

● A system that can identify birds/fish species from images from a camera 
trap (Box 6) 

● A system that can use satellite images to identify the region of interest  
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● A system that can search images with similar content for 
animals/persons/objects with the same identity   

The use of data efficient learning is an important tool in reducing the cost and 
resources required for the application of Machine Learning and so can be seen as 
a supporting technology for many of the other proposed analysis methods. 

  

Costs and Limitations  

The cost of developing data efficient learning prototypes for one or several 
related applications is dependent on the problem, but is likely to cost $10,000s to 
$100,000s depending on the complexity, underpinning data and required 
accuracy. The major costs may come in collecting data to train the model, and 
this cannot be estimated without knowing what data already exists and how 
costly it is to collect additional data to train a required task. If the analysis is 
offline, then a standard GPU-powered server will be needed to execute the 
algorithm for analysing the video, image and audio captured from various 
sensory data sources. The cost of a standard GPU-powered server will be less 
than $10,000. The only risk is the potential problem of an incorrect prediction.   
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Technological Development 

Data efficient learning is a fast-developing area in machine learning, computer 
vision, and audio-processing. For example, in 2019, the prediction error rate of 
semi-supervised learning algorithms on a standard benchmark was almost halved 
with the development of new methods in that year. We are expecting to see 
similarly rapid development in the coming years. 

Key Experts 

There are several prestigious experts in the related techniques. Specifically, the 
experts include: Lingqiao Liu (The University of Adelaide), Piotr Koniusz (Data 61), 
and Lei Wang (The University of Wollongong). 
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Semantic Change Detection in Images 

What is Semantic Change Detection in Images? 

Semantic change detection in images involves comparing images of a scene or 
object over time to look for changes of interest while ignoring incidental changes. 
A typical example would be comparing 2 satellite images of the same location 
but from different times. Appearance changes due to variations in lighting, pose 
and viewpoint should generally be ignored, whereas significant changes such as 
new/missing objects or changes in object appearance should be detected. It is 
common for the pixel brightness difference of incidental changes to be much 
larger than for significant changes. For example, brightness changes due to a 
shadow cast on a face are much more significant numerically than changes due 
to ageing or expression of the face. In early approaches, images were aligned and 
then pixel brightness was compared either directly or via hand-crafted image 
features. Modern machine learning and deep learning improve on this by 
automatically learning features that are invariant to incidental changes and 
sensitive to changes of interest. 

Generally, when comparing 2 or more images for change, they need to be 
aligned at the pixel level. There are standard methods for this in image 
processing, computer vision and remote sensing. These methods typically use 
hierarchical warping and optical flow estimation to minimise photometric error, 
or a mutual information criterion in the case of imagery from different kinds of 
sensors. The temporal spacing and frequency of images impacts on results. For 
example, if there is a long time gap between images it will be challenging to 
detect small-scale, incremental patterns of change. Conversely, comparing many 
images over the same period will show smaller changes between image pairs and 
may make it more difficult to discern long-term changes. To avoid such collection 
biases, images should be collected at the same locations at regular intervals. 
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The definition of what constitutes a significant change is task-dependent. For 
instance, if the task is to look for new man-made structures in satellite images, 
then vegetation change would be largely irrelevant and should be ignored. 
However, in a study of vegetation health, these are exactly the changes that 
should be detected. Consequently, generic change detectors are often useless, 
giving a high false detection rate. There are 3 main approaches to semantic 
change detection: 

1. Object-based: image object detectors are applied to both images, and the 
detections are compared between images. This is useful for well-defined 
compact objects, but not for regions such as fields in satellite images. 

2. Segmentation-based: each image is semantically segmented (also referred 
to as pixel-based classification) so that every pixel is given a discrete label 
(e.g., grass, building, tree). Then the labels in the 2 images are compared 
for differences, and the different pixels are grouped into change regions. 
While this is more general than object-based methods, it requires fine 
alignment of the images, and is limited in that each image is first labelled 
separately. 

3. Supervised learning: this would require a dataset of labelled changes of 
interest, used to train a deep neural network to detect such changes given 
the 2 input images (see Box 7). This is the most general case; it does not 
require fine alignment of images and allows the algorithm to exploit 
information from both images when detecting the change. It does, 
however, require a very large labelled dataset. 
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Related technologies include: 

- Anomaly detection: detect unusual objects or regions in images. The 
machine learning model learns what is “normal” from data, and uses this 
as a comparison for abnormal occurrences. 

- Background modelling in video: a video stream is processed to model the 
background and detect “foreground” objects. This is a kind of change 
detection in video over different time scales. 

Change detection can also be applied to other kinds of data, such as acoustic 
signals. 

The 2 main benefits of this technology are automation and scalability of 
environmental monitoring for change detection (Figure 10). Machine learning can 
automate laborious repetitive tasks that are currently performed by humans at 
great cost. It can also be applied at scale, so that greater area and more time 
instants can be handled by the automated algorithms than the capacity of the 
human analysts. Questions can be asked of the data at a space-time scale that is 
really beyond the ability of human analysts. 

 
Figure 10 Summary of the strengths, weaknesses, opportunities and threats of Semantic Change Detection in 
Images. 
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Current Applications 

An example of current applications of semantic change detection in images is the 
Xview2 challenge. Established by the US Defence Innovation Unit, the Xview2 
challenge was designed to detect damage to buildings due to floods. The dataset 
consists of registered satellite image pairs before and after flooding.   

Potential Applications for the Murray-Darling Basin 

The analysis of changes over time is arguably the most important task in 
environmental monitoring. Overhead imagery collected from satellites or aircrafts 
can be stored and processed to analyse a variety of changes. Change detection or 
anomaly detection can also be applied to ground-based imagery or underwater 
imagery. Change detection in audio data could also be useful. For example, if 
populations of insects are increasing or decreasing, this would change the 
average signal intensity for their sounds. Below are some applications for 
overhead imagery: 

Object-based change detection: 

- Count populations of animals and to study change over time. Wetland 
waterbirds, flood management structures on floodplains and dams can be 
measured using aerial imagery. A similar technique is used by the 
company Orbital Insight which counts objects such as cars and oil tanks 
from satellite images and provides high-level reports of trends over time. 

- Detect recreational vehicles on rivers in satellite images to monitor 
recreational use of the river systems. 

- Detect arrival and departure of animals from ground-based cameras. 

Segmentation-based change detection: 

- Delineate and measure wetland flooding extent. 

- Delineate and measure vegetation responses to flooding. 

- Delineate and measure regions of tree death. 

- Measure growth rates of vegetation over time. 

Supervised learning: 

- Intensive monitoring of an area such as a wetland for changes (e.g., Box 7). 
This would involve iteratively creating a labelled dataset marking false 
alarms to improve future performance. It can be used for discovery and 
anomaly detection by looking for any kind of change, including changes 
that couldn’t have been anticipated by the user. 

https://orbitalinsight.com/
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- Detection and delineation of areas affected by water management, such as 
floodplains and irrigation areas. 

 

Change detection could thus be applied in a large variety of ways, and at a 
massive scale (Box 7). For example, the entire Murray–Darling Basin could be 
monitored regularly for changes by flying regular image collection missions over 
the same area. Regularly collecting the imagery for an extended period would 
create a highly valuable database that can be used to answer a variety of 
questions both now and for decades to come. 

 

Costs and Limitations  

A simple prototype or study would cost in the $100,000s. An operational system 
has software development, maintenance, and data acquisition costs. Software 
development costs for a large-scale system would be in the order of a few million 
dollars, and ongoing cloud costs, maintenance and improvement could cost 
$50,000 to $500,000 per year, depending on the scale. Data costs depend on the 
application – the cost and frequency of airborne or satellite collections, for 
example, could be free or cost $100,000s or millions of dollars depending on the 
chosen platform and the number of data collection events and scale required to 
answer questions. The main risks involve the accuracy of the system and the cost 
of missing an important change.  
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Technological Development 

This is a technology involving large amounts of data, including earth observation 
data, and advances in deep learning technology. The capability and scalability of 
semantic change detection is expected to grow at the same exponential rate as 
both of these factors. 

Key Experts 

Experts on semantic change detection in images in Australia include Jamie 
Sherrah (University of Adelaide), Anton van den Hengel (University of 
Adelaide/Amazon), Dong Gong (University of Adelaide), and Peter Kovesi 
(University of Western Australia). 
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Category 3: Models 
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An Introduction to Models 

Previous sections of this report have addressed the automated collection of big 
data using remote sensing, and the rapid analysis of these large and complex 
datasets using artificial intelligence and machine learning. Recent technological 
developments have extended the capabilities of environmental managers and 
researchers even further, however; the application of models now enables the 
prediction of complex environmental interactions and patterns using trained 
artificial intelligence platforms. Managers can populate these models with 
existing data and a set of simple rules to forecast ecological responses to 
management strategies, environmental change or climatic events. This enables 
decision-makers to make informed choices when designing and implementing 
management programs. 

These models are advancing in sophistication and capability at a rapid rate, and 
are likely to become orders of magnitude more accessible in the near future. It is 
an ideal time for the MDBA to incorporate modelling into its management 
strategies and prepare for future improvements in the area. Modelling 
technology will soon allow managers to input data directly into models for real-
time forecasting, enhancing understanding of the complex interactions between 
wildlife, natural resources and the environment and refining management 
strategies. 

With the uptake of big data, analysis and modelling in an organisation operating 
at a landscape scale such as the MDBA, it is of high importance that efficient data 
storage and sharing platforms are established and that members of the 
workforce use common data language and management practices. 
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Sequential Decision-Making and Reinforcement Learning 

What is Sequential Decision-Making and Reinforcement Learning? 

Sequential decision problems are those that try to anticipate the compounding 
future results of decisions made over a period of time. Predicting the outcome of 
sequential decisions requires modelling the delayed consequences of policies 
that are made today. These problems are particularly challenging to model 
accurately. Consider, for example, setting a policy for both braking and 
accelerating in an autonomous car. Policies developed now must anticipate how 
external independent events may interact with the car in the near future (i.e., the 
pedestrian jumping in the street, a car braking ahead, changing traffic lights). The 
car’s control mechanism needs to consider a trade-off between throttling and 
braking to avoid undesired consequences. When the number of variables is large 
and the environment is complex, developing policies that can predict all possible 
outcomes to achieve an optimal outcome becomes impractical for humans. 

An emerging and powerful tool for solving complex sequential decision problems 
is reinforcement learning. The use of this tool requires reasonably realistic 
simulators of the environment in which the policies must operate. Reinforcement 
learning requires a deep learning agent to ‘play’ the simulator multiple times and 
learn by example which mix of policies delivers the best outcome. In doing so, it 
can then ‘play’ the simulator optimally, demonstrating how to ‘win’ in a particular 
scenario, or it can print a series of ‘policies’ on how to operate under various 
circumstances and scenarios to optimise outcomes (see Box 8). 

The benefit of using these artificial intelligence (AI) technologies is that it allows 
us to automate the processes that are otherwise laborious, time-consuming and, 
in many cases, require human modelling that could be prone to mistakes and 
only can handle a few variables at the time (Figure 11). Using AI to tackle such 
problems is one of the most promising ways forward that Australia could 
significantly benefit from being one of the pioneers.  
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Figure 11 Summary of the strengths, weaknesses, opportunities and threats of Sequential Decision-Making and 
Reinforcement Learning. 

 

Current Applications  

Some examples of how reinforcement learning can outperform humans in 
developing policies for managing complex environments include: 

● ‘Go’ is a strategy game similar to chess. In 2015 AlphaGo (a model) defeated 
the human Go champion, demonstrating that sequential decision-making 
models in general, and deep reinforcement learning in particular, are 
capable of outperforming humans in highly complex, strategic tasks that 
require an anticipation of the far future 

● Reinforcement learning is employed for weather prediction and has 
dramatically improved short term rain prediction 

● Bushfire prediction (see Box 8) 

● Autonomous driving and robotic navigation 

● Dialogue between machine and humans  

● Sports strategy and coaching 
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Potential Applications for the Murray-Darling Basin 

Environmental management is a classic sequential decision-making problem. It is 
challenging because it requires decisions to be made about complex landscapes, 
where the outcome may not be able to be measured for many years or decades. 
Reinforcement learning can support decision-makers in understanding what 
policies will lead to optimal outcomes and, therefore, what monitoring may be 
needed. Reinforcement learning can be used to predict the outcome of individual 
threats or policies across multi-decades on a wide range of measures. Consider 
the following: 

● Impact of environmental watering policies: Using existing models of 
water flow in the MDBA, reinforcement learning could be used to propose 
environmental watering policies that would optimise for a range of agreed 
outcomes. This would require a relatively accurate understanding of how 
watering river channels and floodplains affects biological organisms. Such 
a system could generate heat maps of where the best and worst impacts 
of particular policies would be. The technology could be applied for an 
individual or many species, and to a single site, a region, or to the Basin as 
a whole. 

● Short-term and long-term precipitation forecasting: It is important to 
be able to accurately predict the weather as well as rain conditions. Using 
deep sequential decision-making approaches, the prediction accuracy 
could be significantly improved. This leads to more accurate predictions 
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that lead to better policies (see https://tinyurl.com/y6q3mqgn for an 
example of using these technologies for precipitation prediction). 

● Animal migration modelling: Using the existing patterns and AI 
technologies, we can predict where certain species are more likely to move 
to. It could also assist in predicting in which environments certain species 
can thrive. 

 

Costs and Limitations  

Depending on the scale and objectives of employing the AI technologies 
discussed here, the models could cost upwards of $100,000. For some 
applications, if realistic simulators are needed to be designed, that could add a 
substantial additional cost. 

One risk of this technology is that the model may inaccurately predict the 
outcomes of policies. The more inaccurate the models and the more limited the 
data upon which to train, the greater this risk is. There is also a risk that the 
results of the modelling, if seen as counter-intuitive by an interest group, will be 
dismissed. These same risks occur for human-generated policies. More 
investment in better data and the incorporation of these models into new 
applications could lead to innovations and new insights. 

https://tinyurl.com/y6q3mqgn
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Technological Development  

This is a fast-moving area of technical development, and it is likely to become 
orders of magnitude more capable over the next few years.  

 

Key Experts  

Key experts in this field in Australia include Ehsan Abbasnejad (University of 
Adelaide), Reza Haffari (Monash University), and Javen Shi (University of 
Adelaide). 
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Advanced Hydrological Models 

What are Advanced Hydrological Models? 

In the last decade, environmental water allocations have been used to deliver 
in-channel pulses or have been paired with pumping and engineering 
solutions to artificially inundate wetlands and anabranches. To date, these 
actions have had a primary focus on flow rates and inundation extent, with 
limited attention to in-channel hydraulics and water quality. However, 
consideration to the changes in physical attributes due to changes in flow is 
fundamental to the rehabilitation of riverine ecosystems and should be 
integrated with hydrological restoration. 

Hydrological models are essential tools that have been used to underpin MDB 
policy and operational decisions for decades. The models have been 
developed to simulate discharge, as well as diversions and other components 
of the water balance. Significant investment in the Source Murray Model has 
resulted in this model replacing MSM-Bigmod for almost all of MDBA’s 
modelling requirements in the Murray and Lower Darling Rivers. These models 
are required to extrapolate monitoring at specific locations across the basin, 
as well as simulate scenarios of interest, such as the conditions without 
environmental water or different water delivery strategies.  

However, hydrological models do not produce outputs that are most relevant 
for predicting the ecological response to changes in water availability and 
delivery. At best, local information is used to develop relationships between 
discharge and particular environmental responses, and due to interactions 
with geomorphology and operational structures, these empirical relationships 
between discharge and an outcome of interest cannot be extrapolated 
beyond the site scale. However, with the development of advanced modelling 
capabilities, these hydrological models can now incorporate factors other than 
flow rates to more accurately evaluate and predict environmental responses to 
water management at a landscape scale, and can express ecological flow 
requirements in hydrological terms (Box 9).   

The benefit of converting modelling inputs from flow rates to physical 
attributes experienced by the biota is that 1) outputs are expected to correlate 
to ecological responses more strongly, and 2) these correlations are expected 
to be applicable across river reaches (Figure 12). However, relationships still 
need to be developed between the physical variables and ecological 
responses. In some cases, the relationship is obvious, such as dissolved 
oxygen thresholds for impacts on behaviour or mortality. Velocity thresholds 
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have been developed in South Australia for predicting Murray Cod larvae and 
macroinvertebrate abundance (Gibbs et al., 2020), and to determine the risk of 
algal blooms in rivers by setting velocity thresholds which need to be 
maintained to allow for sufficient mechanical mixing to suppress BGA bloom 
formation (e.g., Mitrovic et al. 2003). Not reaching such velocities under low 
flow situations was a main cause of the 2018/19 Menindee fish kills, as water 
was allowed to stratify for a longer than usual period. This significantly 
depleted dissolved oxygen in the hypolimnion, with fatal consequences after 
mixing events. However, further work is required to extend these reach-
specific studies of velocity thresholds to a basin-scale application and pinpoint 
critical situations in space and time.  

 

 

Figure 12 Summary of the strengths, weaknesses, opportunities and threats of Advanced Hydrological 
Models. 

 

 

http://www.goyderinstitute.org/_r2750/media/system/attrib/file/653/Goyder%20TRS_20-03_River%20Murray%20Ecological%20Connectivity_Final.pdf


71 

Current Applications 

There are reach scale examples of hydrological models being extended to 
provide outputs of physical variables that have a more direct relationship with 
ecological responses, such as: 

● Three of the selected areas for the Long-Term Intervention Monitoring 
Project/Monitoring Evaluation and Research project use relationships 
between discharge and velocity statistics to evaluate and interpret the 
ecological monitoring undertaken at the Lower River Murray (Ye et al. 
2020), Goulburn River (Webb et al. 2015) and Edward-Wakool River 
(Watts et al. 2015). Methods to move from the reach to basin-scale are 
being evaluated as part of the WERP and Ecosystem Functions project. 

● Water quality models that make use of the hydrological models have 
been developed, including the Dissolved Oxygen and Dissolved 
Organic Carbon (DODOC) plugin for Source models (Mosley et al. 
2021). This extension is regularly used by the South Australian 
Department of Environment and Water to assess the risk of hypoxic 
conditions when operating floodplain infrastructure (e.g., Gibbs et al. 
2020). The New South Wales Department of Planning and Environment 
is currently using the tool to assess changes in the risk of hypoxic 
blackwater from different Constraints Management Strategy options. 
Water temperature is a key input to this.  

 

There are potential flow-on benefits from the current applications of the 
technology not yet tested. For example, the ability to simulate water 
temperature and dissolved organic carbon, as well as nutrients and 
productivity from other water quality models, provide the fundamental inputs 
necessary to relate changes in water delivery and water management to the 
amount of energy available to different trophic levels of food webs.  

https://www.awe.gov.au/sites/default/files/documents/cewo-ltim-lower-murray-2014-19-technical-report.pdf
https://www.awe.gov.au/sites/default/files/documents/cewo-ltim-lower-murray-2014-19-technical-report.pdf
https://www.awe.gov.au/sites/default/files/documents/monitoring-ecological-outcomes-cew-goulburn-broken-2013-14.pdf
https://www.awe.gov.au/sites/default/files/documents/edward-wakool-2014-15-ltim-technical-report.pdf
http://www.goyderinstitute.org/_r2750/media/system/attrib/file/653/Goyder%20TRS_20-03_River%20Murray%20Ecological%20Connectivity_Final.pdf
http://www.goyderinstitute.org/_r2750/media/system/attrib/file/653/Goyder%20TRS_20-03_River%20Murray%20Ecological%20Connectivity_Final.pdf


72 

 

Potential Applications for the Murray-Darling Basin 

There are a number of potential applications of advanced hydrological 
modelling for the MDBA’s business that have the potential to enhance 
understanding of the relationship between hydrological flows and ecological 
requirements. For example, inundation models to convert flow rates into 
dynamic inundation patterns including the depth of water, have been 
developed (Teng et al. 2019) and are being extended. These models can be 
coupled with remotely sensed inundation extents to determine water depth, 
interpolate between available images (which can be taken weeks apart), and 
enable scenarios to be assessed. These tools are beginning to be used in the 
FLOW-MER project for the vegetation Basin-scale indicator, and can now be 
applied at spatial scales beyond the capabilities of traditional hydraulic 
models. Such models could be applied at scale across the MDB. 
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Costs and Limitations 

The cost of extending hydrological models to provide more relevant outputs 
to predict ecological responses is likely to require further research and 
application to develop, test and improve the methods. However, the costs 
involved in deploying the technology are low; once the models are set up, 
running additional scenarios for the next year of data of a given scenario is a 
relatively small-time commitment, especially if the hydrological models are 
already required to be run. Data collated for these models (such as 
bathymetry) is likely to have multiple uses and provides a valuable 
foundational dataset.  

 

Technological Development 

Learnings from the application of the DODOC model have found that current 
Source models, developed with a focus on the water balance, have in some 
areas made assumptions that do not provide sufficient information to apply 
the models directly. For example, a wetland is represented as a bulk water 
loss, rather than a storage that must fill and has evaporation and seepage 
losses associated with it, or transmission losses are represented as an 
unaccounted loss rather than attributed to a process. Hence, some 
hydrological model development may be required to enable the extensions of 
interest. Typically, these assumptions have had to be made due to a lack of 
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data available (for example, bathymetry and outputs from hydraulic models to 
configure hydrological model nodes), or sufficient data to separate the effects 
of different processes (such as seepage loss, evapotranspiration, surface water 
groundwater interaction). 

This technology is developing quickly, however often in a disjointed or 
disconnected way. A coordinated improvement program is likely to realise the 
major benefits. The risks involved in further model development incudes the 
complexity in managing the many models across the basin, as well as the 
inputs and outputs from the model. The importance of this process has been 
highlighted recently, and the MDBA Model Uplift Project aims to provide 
technical solutions to support model and output management.  

Key Experts 

CSIRO have a long history of basin scale modelling for environmental 
outcomes. This includes developing hydrologic models and hydraulic 
relationships (Dr Matt Gibbs, University of Adelaide, and Dr Ashmita Sengupta, 
CSIRO), basin scale inundation modelling (Dr Jin Teng, CSIRO) and water 
quality models (Dr Matt Gibbs, University of Adelaide, Dr Klaus Joehnk, 
CSIRO). 

The Aquatic Ecodynamics group (Dr Matt Hipsey, University of Western 
Australia) have experience developing detailed, reach scale, hydraulic-water 
quality models for reaches in the River Murray, Coorong, and estuaries in WA 
and NSW. 

Streamology (Dr Jeff Vietz, University of Melbourne) has developed hydraulic 
relationships to be applied for evaluation of environmental water benefits, in 
particular the Goulburn River. 
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Collecting and curating large ecological datasets - 
tips from TERN 
Collecting and curating large datasets presents a number of challenges for 
ecologists and natural resource managers. To ensure consistency and 
accessibility across large networks such as the MDBA, there are a number of 
key considerations, including consistent data curation from the point of 
collection, database integration and shared repositories using a standard 
language, and model harmonisation. The Terrestrial Ecosystem Research 
Network (TERN) is a continental-wide open data network encompassing a 
variety of sensor streams, data formats, and scales. Data repositories and 
monitoring systems of this size and scale require advanced data infrastructure 
and standardised protocols, which could be adopted by the MDBA as new 
technologies are incorporated into the business. 

Monitoring types 

The first step for environmental monitoring should be to ensure that you are 
planning the correct types of environmental monitoring to provide the 
information types needed for effective decision-making. Key environmental 
questions can be broadly summarised in 6 types, with different forms of 
environmental monitoring excelling at answering different question types. The 
6 key types of questions can be summarised as follows: 

• Where is change occurring?   

• When is that change occurring? 

• What components of the environment are changing? 

• What is the magnitude and direction of change? 

• Why is change occurring? 

• How can we manipulate change in a way we are happy with?   

(Sparrow et al. 2020a) 

It is important to choose monitoring activities that are well suited to 
addressing the questions of interest, and in many cases a mix of monitoring 
activities will need to be conducted to provide the information required for 
decision-making (Figure 13).
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Figure 13 Environmental monitoring decision-making guidelines, from Sparrow et al. (2020a) (used with permission). 
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Standardising monitoring 

Once monitoring activities are determined it is then important to collect that 
information in the most standardised manner possible, in a way that 
maximises objectivity and the ability to provide the information required. 
Standardisation can apply to field sensors, field observations and 
measurement and remote assessment techniques. It is also best practice to 
collect objective data wherever possible, with measurements and continuous 
data providing far more utility than the collection of subjective, categorical 
data. The latter has much greater inaccuracies in collection, and the collection 
of categorical values makes it harder to detect change, particularly subtle 
change. If data is collected consistently across the entire area of interest, then 
the ability to inform on change is maximised. Collecting information in a 
standardised manner across all sites enables the intercomparison between 
sites (spatially), the comparison of an individual site through time (temporally) 
and the ability to assess how different sites are changing in comparison to 
each other (spatially and temporally). This task is much more difficult, if not 
impossible, without the application of standardised methods. Collecting 
standardised, objective data also maximises the potential for data reuse, 
leading to greater efficiencies (both time and financial) and improved value 
from monitoring activities. It also enables the data to be utilised for purposes 
that were not necessarily considered at the time of collection, enabling the 
greatest chance of data still being useful when questions change as a result of 
adopting adaptive management principles.  

Ensuring compliance with monitoring methods is best achieved through a 
combination of well-considered and well-documented monitoring protocols. 
These protocols should include a rationale for data collection so that 
observers understand why they are collecting that data, and how it is likely to 
inform decision-making. Practical information on equipment and time needed 
to conduct the protocol, along with tips and tricks to help streamline data 
collection for data collectors are also important. For a protocol to be of 
maximum effectiveness, it is essential to include a step-by-step guide for the 
core method, written in such a way to avoid any ambiguity or ability to 
interpret the protocols in differing ways. Whilst this often takes time to get 
right, it is worth persevering with. Prior to developing protocols, it is important 
to determine if any already exist that are fit for purpose and can be easily 
implemented. Implementing pre-existing protocols is likely to save significant 
effort on method development and data management (see below) and 
maximise the compatibility of different monitoring programs.  
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Even with these protocols published and made widely available, it is also 
important to develop and deliver training activities in a variety of ways to 
assist with widespread implementation. Recently hybrid in-person and online 
events have become common, but where possible in-person training should 
be prioritised so that trainees can interact with trainers, ask questions and see 
methods used practically. TERN have found that training conducted in areas 
where there are a diversity of environments occurring (analogous to those the 
trainees are likely to need to sample) provides the best experience for 
trainees. A site that provides the opportunity for more formalised 
presentations (such as a lecture theatre style) for theory and rationale 
components, along with practical demonstrations of field data collection, 
provides the best experience for trainees. Once data collection activities are 
underway, it is sensible to run regular calibration activities within and between 
field teams (at least once per field season) to ensure that methods are still 
being implemented consistently by all data collectors (McCallum in Prep;  
White et al., 2012; Sparrow et al., 2020b).  

 
Sample collection 

It is strongly recommended that standardised monitoring methods are 
combined with robust sample collection protocols for a variety of reasons. A 
simple “chain of custody” system can be set up, where samples have barcodes 
attached in the field and scanned into a field data collection app (see below) 
to ensure a physical sample can always be associated with other data 
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collected at the location. Samples enable accurate taxonomic identification to 
combine with other information collected at the monitoring site. This 
circumvents accuracy issues associated with field-based identifications and 
enables samples to be identified by the relevant taxonomic expert. Samples 
are also able to be placed in long-term storage, which enables them to be re-
identified as taxonomy changes to ensure data is compatible with modern 
taxonomy. This ensures greater longevity of the data collected. These samples 
can also be stored to provide access to scientists at a future time, enabling 
their use for purposes that were not conceived at the time of collection. The 
samples themselves can be used for a range of analyses that enhance the 
initial data collection (e.g., taxonomic revisions, eDNA approaches, biological, 
chemical and physical analysis). There is also immense value in having all of 
these activities conducted on samples collected at the one field site at the one 
collection time, enabling a range of cross-disciplinary analyses that would 
otherwise not be possible. Managing these samples as ongoing research 
infrastructure provides ongoing benefits to both the research and 
management communities.  

 

Field data collection and centralised data management 

To assist with standardisation and to simplify the curation, storage and 
delivery of data, it is recommended that consideration is given to electronic 
field data collection. Collecting information into a purpose-written app at the 
point of collection has a wide range of benefits, namely; 
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● Ensures compliance with standards by collecting information in a way 
that ensures that data is entered in the way it is intended; by setting 
criteria for fields (pre-defined categories, checks for sensible values, 
enforcement of particular collection accuracy, and checking of data 
dependencies) and checking the completeness of data prior to online 
submission, along with the ability to check and highlight likely errors 
when the data are being collected (and hence easily re-collected). 

● Prevents data transcription errors by removing the need to collect, 
translate and enter data from poorly collected and messy handwriting 
from field data sheets. 

● Removes interpretation by providing both structure and categories 
when necessary for data collection, along with the ability to provide 
definitions and guidance for data collection at the point of collection.  

● Enhances data security by backing up data as it is collected, both in 
several places locally (onboard memory and SD card), and where there 
is a capacity for internet connectivity, data can be backed up to a cloud 
database as it is collected, minimising the chance of data loss. 

● Ensures easy data federation by ensuring that data from multiple sites is 
collected in the same manner and is able to be uploaded to a 
centralised database as per the FAIR data principles (Wilkinson et al., 
2016) 

● Ensures efficient data management by automating the submission of 
data to a centralised database, and enabling data curation activities to 
be centralised to a small and specialised team rather than having a 
significant data management component in each field team. It also 
enables the submission of subsequent data (i.e. herbarium 
determinations), interoperability with other data sources, and the 
efficient delivery of data. 

● Enables a chain of custody to be easily established for collected samples 
by utilising the camera of the device to scan pre-prepared, unique 
barcodes (or QR codes) that are physically stuck to samples collected in 
the field, so that they are always able to be easily associated to the site 
and other data from where they were collected (Tokmakoff et al., 2016). 

● Enables the rapid and easy collection of contextual data by collecting 
photos of the site or specimens that are collected with, and linked to, 
other data collected.  

● Enables unique data collection methods to be integrated, such as the 
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collection of three-dimensional photopoints, or the automated 
assessment of groundcover or canopy cover using data collected by 
the device camera.  

● Enables the collection of some data automatically where the device 
being used can inform (without intervention from the user) fields such 
as date, time, location, and direction that is output by the device, 
decreasing the likelihood of further transcription errors.   

● Can provide advice by the inclusion of app pop-up reminders, tips and 
tricks, links to definitions, and links to electronic protocol manuals, 
ensuring that the data collector has all of the necessary information 
needed to collect the data appropriately.  

● Can provide some pre-analysis to ensure data is in a form that makes it 
easier for ecologists to subsequently analyse. These apps also make 
analysis easier by being able to connect the live database to analysis 
software, ensuring researchers have the most up-to-date data and 
tooling to conduct analysis.   

● Centralised data management can simplify data management, curation 
and delivery through the use of specialists in data management and 
the creation of specialist tools to enable the widest dissemination of 
data possible.  

● Can facilitate data access restrictions for sensitive information through 
both authentication and obfuscation of sensitive data (Lowe et al., 
2017).  
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Data Sharing Platforms 
The sheer avalanche of information now gathered by survey and monitoring 
technologies poses obvious issues for researchers and practitioners of storage 
infrastructure and processing and data sharing. Furthermore, the integration 
of multiple data sources collected at different spatial and temporal scales is 
critical. 

Data sharing simply means making data available for use by others. Perhaps 
the key part of that definition is “for use”. Data sharing policies should 
consider both the development and adoption of data and metadata 
standards, as well as identify the availability and best-practice for federated 
data repositories and software tools to access and manage those repositories. 
Such practices will facilitate the use of open and reproducible data curation by 
the MDBA.   

Centralised repositories for data are essential, but these no longer have to be 
in the form of fixed single databases. Instead, federated data systems make 
use of cloud storage and comprehensive metadata to allow access to any user 
and consequently facilitate data access. A key consideration for the uptake of 
shared data systems is determining how structured the repositories should be, 
or whether simple ‘data lakes’ of raw format data are stored without any 
transformation. Such an approach then requires more substantive data 
processing prior to analysis and visualisation but at least ensures all data 
sources are centrally accessible whilst limiting the costs of data management. 
When combined with metadata standards, this approach can produce 
significant efficiency gains with limited setup costs. More broadly, 
organisations should focus on data management and sharing, and how they 
might consider automating the data pipeline of handling, storing, and 
processing the massive amounts of data that can be generated by these 
sensor networks, particularly how the process can be operationalised at the 
large spatial and temporal scales of interest. As mentioned above, this 
component also should consider the artificial intelligence pipelines that can 
process these large and complex data streams into usable data for 
subsequent analysis. There is a clear need for these technologies to utilise 
cloud computing for data storage, and potentially programming and 
processing techniques that split data into manageable chunks and process 
them in parallel. 
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The concept of “data sharing readiness” refers to reliable and consistently 
curated data that are stored in accessible repositories for use by a broad user 
community. In more technical terms, this corresponds to standardised data 
sources shared in repositories that are recognised and accessible to the 
scientific communities. The review should consider how to integrate databases 
or data repositories into the technology pipeline such that recorded data are 
accessible online, but also that this remote access should consider both how 
data can be submitted, potentially automatically by connected sensor 
networks, and also retrieved at any time by end-users. In terms of data 
retrieval, “data sharing readiness” should mean that the shared repositories of 
data are consistent with FAIR (Findable, Accessible, Interoperable and 
Reusable; Wilkinson et al. 2019) and TRUST (Transparency, Responsibility, User 
focus, Sustainability and Technology; Lin et al. 2020) data principles. Data 
repositories such as that of the United States Geological Survey (USGS) can be 
extremely valuable in providing readily accessible and well-catalogued 
environmental data. 

  



84 

Skilling A Workforce 
All of the technologies described in this Innovation Sweep require some 
degree of bioinformatics and data processing skills to be executed. While it is 
possible to outsource tasks requiring these capabilities to external contractors, 
it is clear that the next phase of ecology will be far more computerised than in 
previous years, and the skillsets of ecologists must evolve in parallel. While 
bioinformatics is increasingly taught as part of undergraduate coursework, 
there is still a mismatch between the available training and the rapidly 
increasing demand for data scientists. Further, few established ecologists have 
the capacity to undertake additional tertiary studies once in the workforce.  

Studies have found that environmental professionals with established careers 
show a preference for short, self-paced online courses when upskilling 
(Attwood et al., 2019). Such training modules could be incorporated regularly 
into the MDBA’s operations to improve bioinformatics proficiency in the 
workforce. While the MDBA may choose to develop their own training 
program targeted towards areas of interest and need, there are several online 
platforms currently available that provide a large body of training materials 
and courses on a variety of bioinformatics tools. An example is GOBLET 
(https://www.mygoblet.org), a repository of high-quality bioinformatics 
learning materials established to be a network of trainers and end-users 
(Corpas et al., 2015). Such resources could be readily used by current staff 
seeking to improve their bioinformatics skills – meanwhile, a stronger focus on 
data expertise when recruiting new team members would improve the 
capability of the MDBA workforce overall to work with new technologies 
requiring large, complex data sets.   

https://www.mygoblet.org/
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Next Steps 
Given the rapid development predicted for the near future of the technologies 
discussed in this report, the MDBA would benefit from regular revisions and 
conference-style workshops with experts in the field. This would allow the 
MDBA to keep up to date with progressions and advancements of 
technologies already in use, as well as maintain awareness of other 
innovations that may emerge. It is recommended that the MDBA conduct 
reviews of technologies of interest annually, as rapid growth is anticipated in 
many areas of innovation, including data analysis and modelling platforms 
that utilise artificial intelligence. These audits may be conducted within the 
MDBA by connecting and communicating with the network of experts 
identified within this report, or by outsourcing the review to an external 
organisation. This will ensure that the MDBA remains at the forefront of 
ecological management techniques in Australia, and will streamline transitions 
towards the application of next-generation technologies. 

Liaising directly with commercial providers of data sensing and sharing 
platforms may also be a cost-effective pathway towards accessing cutting-
edge products and training. It is recommended that in-house training or 
embedded placements with technology companies and providers be made 
available to staff within the MDBA, as this will not only facilitate skill-building 
within the workforce, but encourage critical and innovative thinking. Building 
teams of staff within the organisation that can confidently and effectively 
implement these technologies will be highly beneficial to the MDBA’s 
business.  
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Conclusion 
This Innovation Sweep provides a summary of emerging technologies in 
ecology and natural resource management that have the potential to improve 
environmental outcomes throughout the Murray-Darling Basin. A range of 
advanced sensing technologies and machine-learning assisted data analysis 
techniques have been described, with the capacity to increase the accuracy 
and efficiency of the MDBA’s monitoring efforts. A summary of the potential 
on-ground areas of application for these technologies can be found in Table 
4. Further, modelling approaches enhanced by artificial intelligence have been 
detailed that can inform decision-making for long-term management projects 
such as environmental watering. Using such models, managers can predict the 
future outcomes of various strategies with a high degree of accuracy. 
Although each of these technologies are powerful tools alone, they become 
exponentially more useful when partnered and used together. For example, 
autonomous platforms may collect long-term data on water levels that can be 
quickly and efficiently analysed using machine learning-based analysis. The 
results of this analysis could then be fed into sequential decision-making and 
reinforcement learning models to assist managers in identifying best-practice 
environmental watering strategies.  

Based on the innovations explored in this report, a number of skills and 
capabilities were identified that emerged as high priority within the workforce 
in the move towards adopting next-generation ecological technologies. It is 
apparent that bioinformatics and coding skills are becoming increasingly 
relevant and valuable for ecologists, and often have the added benefit of 
improving data management and curation practices. A stronger focus on 
training and recruiting individuals skilled in these areas would be beneficial for 
the MDBA in the future. 

The technologies described in this report have undergone rapid development 
in recent years, and many are predicted to improve in speed and accuracy by 
orders of magnitude in the near future. It is therefore timely that the MDBA 
consider incorporating these tools into management planning and practice 
and preparing their workforce to uptake the required skills. 
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Table 4 Summary of sensor and data analysis technologies discussed in this Innovation Sweep and their potential to inform on areas of interest to the MDBA. ✔ = directly, ✦ = 
indirectly. 

 Species/Individual Presence Species/Individual Abundance Soil 
Chemistry 

Water 
Chemistry 

Water 
Level 

Water 
Temperature 

Turbidity Flow Vegetation 
Cover 

 Birds Fish Invertebrates Micro-
organisms 

Birds Fish Invertebrates Micro-
organisms 

eDNA ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✦ ✦      

Autonomous 
platforms 

        ✔ ✔ ✔ ✔ ✔ ✔  

Animal 
tracking 

✔ ✔ ✔             

Machine 
Learning 
Based 
Analysis 

✔ ✔ ✔  ✔ ✔ ✔    ✔    ✔ 

Visual 
Question 
Answering 
and Visual 
Language 
Navigation 

 

✔ ✔ ✔  ✔ ✔ ✔    ✔    ✔ 



88 

Data 
Efficient 
Learning for 
Vision and 
Audio 
Recognition 

✔ ✔ ✔  ✔ ✔ ✔    ✔    ✔ 

Semantic 
Change 
Detection in 
Images 

✔ ✔ ✔  ✔ ✔ ✔    ✔    ✔ 
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