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Executive summary 

Alluvial aquifers are the most extensively developed groundwater resource in the Murray-Darling 
Basin for irrigation and other purposes. Recent groundwater metering data indicates that 
approximately 75% of groundwater usage in the MDB is concentrated in eight major alluvial 
aquifer systems comprising 22 Sustainable Diversion Limit groundwater resource units. This study 
applied a consistent and comprehensive approach to understand trends, sustainability and 
resilience characteristics of these alluvial aquifer systems at the basin scale, focusing on these 22 
resource units to support more informed groundwater management practices. 

Groundwater use varied between 8% and 18% of total water use within the Basin during 2012 to 
2019 with larger extractions in years of lesser surface water availability. This pattern can be 
attributed to several factors, including heightened groundwater irrigation to compensate for 
reduced rainfall. In areas where both groundwater and surface water allocations are available, 
surface water tends to be prioritized for economic reasons. This complementary usage pattern 
between surface and groundwater resources offers potential for adaptive management solutions 
including Managed Aquifer Recharge (MAR). 

To analyse groundwater level trends, data from 910 observation bores spanning 50 years (1971-
2021) were utilized, focusing on minimum, mean, and maximum depth to water table. The 
analysis revealed statistically significant groundwater level declines across the alluvial aquifer 
systems, averaging 0.11 m/year, with rates ranging from 0.03 m/year to 0.19 m/year. Spatial and 
temporal trends in groundwater levels were further explored using clustering techniques, which 
identified six distinct clusters representing variations in groundwater behaviour before, during, 
and after the Millennium drought (1997-2009). Approximately 50% of bores were part of a cluster 
that exhibited a consistent increase in DTW, while another significant cluster (26% of bores) 
showed stable levels before 1996 but experienced declines in groundwater level during and after 
the drought. 

A machine learning (ML) model was used to analyse the causal relationships between climatic and 
anthropogenic variables—such as rainfall, evapotranspiration, flood events, and groundwater 
extraction—and observed groundwater level trends. Explainable artificial intelligence (AI) 
techniques were applied together with the trained and validated ML model to assess the 
sensitivity of groundwater level to different variables. This approach provided valuable insights 
into how groundwater levels are influenced by various factors and how these relationships have 
evolved over time. The causal attribution analysis focused on 14 resource units over a 32-year 
period (1988-2020). Limitations in groundwater extraction data was overcome by including the 
number of groundwater extraction bores drilled over time as a proxy for extraction rates. A single 
feed-forward neural network model was trained and validated using this dataset, successfully 
predicting both seasonal and long-term groundwater trends. 

The sensitivity analysis conducted with explainable AI consistently revealed the importance of 
flooding information in predicting groundwater level changes. This highlights the importance of 
groundwater recharge that happens during major flood events. The analysis also revealed that an 
increase in the number of groundwater bores over the 50-year period is statistically related to 
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long-term changes in average groundwater levels in the resource units. Future modelling efforts 
could benefit from incorporating additional biophysical variables to further refine the 
understanding of these influences. 

Targeting areas with greater long-term groundwater declines and locally available aquifer storage 
space through managed aquifer recharge (MAR) could enhance water security. The potential 
aquifer storage volume estimates for unconfined systems in the Murray-Darling Basin varied 
significantly across groundwater resource units and confidence intervals. At a 75% confidence 
interval, about 6500 GL of unconfined storage potential was identified within 5 km of major rivers. 
However, this capacity was spread over large areas, making it unrealistic to fully realise. 
Volumetric estimates differed from previous assessments but were within a factor of two. Over 
75% of the total potential volumes were identified in four resource units, with significant portions 
near major rivers. The Lower Namoi, Goulburn-Murray, and Mid-Murrumbidgee had the highest 
average recharge per unit area, suggesting greater potential for MAR here. The upstream and 
tributary alluvial resource units had lower volume estimates, with the Upper Condamine Alluvium 
having the highest volume among them. The sensitivity analysis showed that depth to 
groundwater was the most sensitive criterion, followed by salinity. No suitable areas were 
identified in the Upper Namoi Tributary and Upper Gwydir units at the 75% confidence interval. 

Across all confined groundwater resource units, approximately 9700 GL of potential storage was 
identified, with around 4700 GL located within 5 km of major rivers for recharge. However, 
storage capacity was spread over a large area (>20,000 km²), making full utilization unrealistic. The 
Lower Namoi Alluvium showed significant potential storage volumes at a 75% confidence interval 
(3300 GL) and high robustness (0.76). The Lower Murrumbidgee Deep Alluvium had the second 
highest potential storage volume at 75% CI (3280 GL) but a lower robustness score (0.13). The 
Mid-Murrumbidgee Alluvium stands out with a highly robust volume estimate (330 GL) 95% of 
which was within 5 km of major rivers. Hydrogeological factors significantly influenced the 
estimated storage volumes, with aquifer thickness, hydraulic conductivity, and transmissivity being 
key to recharge efficiency. Salinity levels also impacted feasible areas and consequently storage 
volume potential. These factors influence how effectively each area can receive additional 
recharge and store water for long-term use.  

Assessments of MAR were conducted at Basin scale and results should be considered indicative of 
regional potential. Results differed from previous work due mainly to the use of different 
infiltration feasibility criteria (unconfined aquifers) and injection head limitations (confined 
aquifers). Local scale investigations are required to validate the potential and assess site viability 
according to Australian risk-based guidelines for MAR project evaluation including technical and 
socio-economic factors. 

An infiltration basin site was conceptualized for the Lower Namoi area, targeting the upper, 
unconfined aquifer of the Narrabri Formation. The area had high screening confidence and 
recharge potential, with a total aquifer capacity locally of 32,000-36,000 ML. To achieve this, 8-10 
basins of 6.25 ha each would be required. Median allocation trade prices were higher during low 
flows in the Namoi River, and this was used to set operation rules for targeting higher parts of the 
hydrograph. The project’s median present cost over 50 years was estimated around $18 million, 
with capital costs of $5 million and operating costs of $13 million. Median levelised cost (LC) of 
recharge was $0.09/m3 and LC of recovered water was $0.21/m3 (ranging $0.12-0.30/m3). Costs 
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compare favourably against alternative water supply options including recycled water, stormwater 
harvesting, desalination and unit costs of dam storage. The most sensitive parameter affecting the 
variability in LC of recovery was the social discount rate, followed by the opportunity cost of 
water, operational rules based on river flow rates and trade prices, and aquifer storage efficiency. 
Reducing uncertainty in the assessment could be achieved by conducting investigations to narrow 
the range of these variables.  

An infiltration-based MAR scheme in the Lower Namoi could deliver multiple benefits due to 
diverse agricultural land uses, regional population centres, and groundwater-dependent 
ecosystems. The area includes 6,100 km² of dryland agriculture, 1,100 km² of irrigation, and 0.8 
km² of horticulture. Key commodities include wheat, cotton, and chickpeas. Severe drought 
conditions between 2017-2020 highlighted the need for increased water security, with 
groundwater extraction exceeding limits and declining groundwater levels. Proposed MAR 
frameworks could supplement supply, improve productivity, support use or trade, and enable 
conjunctive use of surface and groundwater. The scheme could use surface water during 
availability to recharge groundwater, providing secure, tradeable entitlements. This model could 
attract private investment and support environmental outcomes by reducing surface water 
demand during low-flow periods. 
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1 Introduction  

Climate change is expected to lead to higher temperatures and reduced rainfall in many areas of 
the Murray-Darling Basin (MDB) (Whetton and Chiew, 2021). Hydrological changes corresponding 
to these are anticipated to result in reduced availability of water for all users (Robertson et al., 
2021). Water resources management in the Basin must adapt to these changes to ensure 
resilience of the community and environment to impacts. 

Surface water systems are more directly impacted by climate variability and change. Often 
groundwater systems can provide a more robust and resilient supply compared to surface water 
systems (Kundzewicz and Döll, 2009; Thomas et al., 2017), although aquifers with limited storage 
or those directly recharged by surface water sources are also vulnerable to climate change.  

This study, conducted as part of the Murray-Darling Basin Water and Environment Research 
Program (MD-WERP), focused on developing an improved understanding of groundwater 
resources to inform and support adaptation options for water resource management in the MDB.  

The study aimed at:  

• Analysing long-term records of groundwater levels in key alluvial systems and undertaking 
causal attribution analyses to investigate plausible relationships with climatic and 
anthropogenic drivers to temporal trends and patterns observed in groundwater levels. 

• Investigating resilience, stress and sustainability characteristics for 22 groundwater 
Sustainable Diversion Limit (SDL) resources units across eight major alluvial aquifer systems 
in the MDB. 

• Mapping of Managed Aquifer Recharge (MAR) potential based on the assessment of 
aquifer and physiographic features to identify areas of MAR potential and develop a cost 
estimate framework for conceptual MAR sites. 

The trends and causal attribution analysis provides the evidence base for the status of 
groundwater in the SDL resource units to investigate its resilience, stress and sustainability 
together with other confounding characteristics like aquifer properties, groundwater demand and 
environmental water needs. Similarly, the trend analysis also provides critical evidence base for 
evaluating aquifer storage for MAR. These three analyses undertaken consistently across all the 
alluvial SDL resource units at the basin scale enable a relative assessment of groundwater 
sustainability and management priorities across the basin. 

This report summarises key findings from different components of the study. Detailed description 
of methods, data and results presented for each analysis are provided in the summary reports for 
the project (Rojas et al., 2021; Rojas et al., 2023c) and journal publications (Fu et al., 2023; Fu et 
al., 2022; Rojas et al., 2023a). Fu et al. (2023) conducted groundwater level trend analyses and 
preliminary investigation of explanatory climate variables for resource units within the main 
alluvial aquifer systems in the MDB. This was followed by a study examining temporal patterns of 
groundwater levels across those resource units comparing hierarchical clustering and self-
organising map methodologies (Fu et al., 2022). A detailed analysis of groundwater resilience, 
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stress and sustainability metrics for these alluvial systems formed the subject of a subsequent 
study (Rojas et al., 2023a). The methodology and preliminary analysis of causal attribution using 
machine learning based sensitivity analysis was presented in the second annual summary report 
(Rojas et al., 2023c). This final report summarises key findings of previous work and presents 
results from the third year that further explored causal attribution with machine-learning 
algorithms, assessed MAR potential focusing on resource units with long-term groundwater level 
decline, and used the results to conceptualise potential MAR sites for preliminary cost estimation 
and implementation framework in the context of regulated water resources in the MDB. 

1.1 Objectives 

Addressing the aims stated above, the objectives of the project were to: 

1. Develop a basin-scale understanding of the status and trends of groundwater by 
undertaking groundwater level trend analysis across eight alluvial aquifer systems (22 
resource units) and evaluate spatiotemporal patterns in groundwater levels using 
hierarchical clustering and self-organising map methods. 

2. Develop machine learning methods to study causal attribution through covariate analysis 
considering groundwater extraction, rainfall, evapotranspiration and resource 
development. 

3. Develop and implement a methodology for probabilistic mapping of managed aquifer 
recharge (MAR) potential in selected alluvial aquifer systems to identify areas with a 
greater chance of scheme viability (drawing on outputs from 1 and 2).  

4. Develop conceptual models of MAR schemes for selected areas (e.g. identified in 3) for 
preliminary financial assessment by modifying an existing tool developed by 
CSIRO. Potential implementation frameworks (policy, regulatory, institutional 
arrangements) for the conceptual MAR schemes will be discussed.  

1.2 Description of the study area 

The Murray-Darling Basin (MDB) covers an area of over one million square kilometres (ca. 14% of 
Australia’s continental territory), supporting three-quarters of Australia’s irrigated agriculture and 
contributing to over a third of the nation’s agricultural production. Being such a large area, the 
climate varies greatly from sub-tropical in the north to semi-arid in the south and west, and to 
alpine in the southeast. Rainfall and evaporation vary with a distinct east-west rainfall gradient 
from high to low (annual averages of around 1500–300 mm) (Crosbie et al., 2012). 

There are four main groundwater systems in the MDB; surficial sediments with unconsolidated 
sedimentary plain and alluvial aquifers (where most extraction occurs), tertiary limestone aquifers 
of the Murray Basin throughout the western MDB, underlying and outcropping fractured and 
consolidated rock, and the Mesozoic sediments of the Great Artesian Basin (GAB) (Ross, 2012; 
Stewardson et al., 2020; Walker et al., 2021). 

This study focussed on the MDB's eight main alluvial aquifer systems from which nearly 75% 
of groundwater extraction in the Basin occurs (MDBA, 2020c). The study was conducted and 

https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/groundwater-extraction
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reported results at the groundwater SDL resource unit scale. These are reporting areas that reflect 
different aquifer characteristics, levels of management and knowledge of the groundwater 
resources across the MDB. Of the 80 groundwater resource units in the MDB, 22 representing the 
main alluvial aquifer systems within the Basin were analysed in this study (Figure 1). 

 

Figure 1 Main alluvial groundwater systems in the Murray-Darling Basin and the corresponding groundwater 
resource units.  

1.3 Groundwater use across the Murray-Darling Basin  

Figure 2 compares the surface and groundwater use in the MDB for the period 2012-13 to 2018-19 
reported in the Transition Water Take Reports (MDBA, 2020c). This comprises groundwater use 
data from the entire MDB and is a more reliable dataset compared to reporting periods prior to 
2012. Average groundwater use during this period is 1.482×109 m3/y and represents about 13% of 
total water use. Groundwater use ranged between 8% and 18% during this period and was 
generally found to increase when surface water availability decreased. While surface water use 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/aquifer-characteristics
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declined between 2012-13 and 2014-15, groundwater actual take increased from 1223 GL to 1543 
GL over this period. 

 

 

 

Figure 2 Water use in the Murray–Darling Basin for the period 2012-13 to 2018-19. 

The Transition Water Take Reports highlights that 92% of the annual groundwater take (use) was 
metered for the year 2018-19 representing 12% of the total groundwater take across the Basin 
(MDBA, 2020c). Metering rates varied by state: 100% in the ACT and New South Wales (although 
five resource units had no metering), 98% in South Australia, 84% in Victoria, and 45% in 
Queensland. However, 100% of the groundwater take under basic rights (domestic and stock) is 
unmetered. Notwithstanding the lack of metering for groundwater take under basic rights, this 
suggests that recent statistics on groundwater use are more reliable compared to previous 
estimates. Among the Basin states, NSW uses the largest share of groundwater. For the period 
2012-13 to 2018-19, New South Wales (69%), Queensland (14%), and Victoria (13%) account for 
96% of the total groundwater use reported in the Basin (Figure 3). 

 

 

Figure 3 Groundwater use per Basin State for the period 2012-13 to 2018-19 

 

Close to 75% of the groundwater use in the MDB for the period 2012-2019 is concentrated in eight 
alluvial systems (MDBA, 2020c) (Figure 1). Within each of these systems, specific groundwater 
resource units show the following patterns in groundwater usage: 
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• Condamine (Upper Condamine Alluvium – Central GS64a1, – Tributaries GS64b). For the period 
2012-13 until 2018-19 this alluvial system concentrates on average 43% of the total 
groundwater use metered in the MDB portion of Queensland, with the most recent estimate 
bringing this value close to 50%. If groundwater use in the Upper Condamine Basalts (GS65) is 
also included, the average use amounts to 80% of groundwater use in the MDB portion of 
Queensland. 

• Gwydir (Upper Gwydir, GS43 – Lower Gwydir, GS24). For the period 2012-13 until 2018-19 this 
alluvial system concentrates on average 4% of the total groundwater use metered in the MDB 
portion of New South Wales. 

• Namoi (Upper Namoi, GS47, GS48 – Lower Namoi, GS29). For the period 2012-13 until 2018-19 
this alluvial system concentrates on average 18% of the total groundwater use metered in the 
MDB portion of New South Wales. 

• Macquarie (Upper Macquarie, GS45 – Lower Macquarie, GS26). For the period 2012-13 until 
2018-19 this alluvial system concentrates on average 5% of the total groundwater use metered 
in the MDB portion of New South Wales. 

• Lachlan (Upper Lachlan, GS44 – Lower Lachlan, GS25). For the period 2012-13 until 2018-19 this 
alluvial system concentrates on average 16% of the total groundwater use metered in the MDB 
portion of New South Wales. 

• Murrumbidgee (Lower Murrumbidgee Shallow, GS28a – Lower Murrumbidgee Deep, GS28b – 
Mid-Murrumbidgee, GS31). For the period 2012-13 until 2018-19 this alluvial system 
concentrates on average 29% of the total groundwater use metered in the MDB portion of New 
South Wales. 

• Murray (Lower Murray Shallow, GS27a – Lower Murray Deep, GS27b – Upper Murray, GS46). 
For the period 2012-13 until 2018-19 this alluvial system concentrates on average 8% of the 
total groundwater use metered in the MDB portion of New South Wales. 

• Goulburn-Murray (Shepparton Irrigation Region, GS8a – Sedimentary Plain, GS8c). For the 
period 2012-13 until 2018-19 this alluvial system concentrates on average 88% of the total 
groundwater use metered in in the MDB portion of Victoria, with the most recent estimate 
bringing this value to 90%. 

Reported groundwater use in the resource units comprising these resource units and the Border 
Rivers is presented in the appendix (Table A.1). 

 

1.4 Managed aquifer recharge potential 

Managed Aquifer Recharge (MAR) is defined as the purposeful recharge of water to aquifers for 
subsequent recovery or for environmental benefit (Dillon et al, 2009). MAR is currently practised 
in only two groundwater resource units in the MDB; one in the Angas Bremer it in South Australia 

 

 
1 This nomenclature corresponds to the 80 Groundwater Sustainable Diversion Limits (SDL) Resource Units reported by the Murray-Darling Basin 
Authority (https://data.gov.au/data/dataset/66e3efa7-fb5c-4bd7-9478-74adb6277955. Accessed on 15-November-2021). 

https://data.gov.au/data/dataset/66e3efa7-fb5c-4bd7-9478-74adb6277955
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(SA) and another in the Australian Capital Territory (ACT) (MDBA, 2020c). The latter was part of a 
pilot program by the ACT government to use MAR to store stormwater for future irrigation of 
urban green spaces in the Sullivans Creek area (ACT Government, 2015).  

MAR volumes would need to be accounted for in determining the annual permitted take according 
to the Basin Plan (MDBA, 2012). In the Angus Bremer, the use of surface water for MAR is 
accounted for as actual take and later extraction of water from the groundwater storage is 
accounted for separately from the annual allocations/permitted take/actual take of the 
groundwater resource unit (DEW, 2019).  

Another successful trial to use MAR for environmental benefit was conducted in the Katarapko 
Floodplain in SA (Martin, 2019). This showed that with relatively small volumes of water injected 
into the alluvial sediments, the resulting lens of fresh groundwater provided measurable 
improvements to River Red Gum tree health.   

Larger MAR projects have been explored in the MDB in the past. The Broken Hill Managed Aquifer 
Recharge project investigated groundwater related options including MAR to contribute to water 
savings in the Basin at the Menindee Lakes Storages located on the lower section of the Darling 
River in far western NSW and enhance water security for Broken Hill (Lawrie et al, 2012). Other 
assessments conducted within the MDB have indicated feasibility in the Murrumbidgee River 
(Khan et al., 2008) and Namoi River regions (Fuentes and Vervoort, 2020). A Basin-wide 
assessment revealed MAR opportunities of around 2000-4000 GL (Gonzalez et al., 2020).  

This study introduces a novel framework for mapping MAR potential across the main alluvial 
aquifer systems of the MDB, improving upon previous research. Key innovations include the use of 
groundwater level trend analyses to target areas of depletion, the development of methods for 
assessing MAR in confined aquifers, and a stochastic approach to account for uncertainty in spatial 
criteria and feasibility thresholds. These advancements enable more accurate and robust 
identification of potential areas for MAR implementation. 
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2 Groundwater level trends and spatiotemporal 
patterns 

2.1 Scope 

Assessment of groundwater resources over time is essential for understanding natural and 
anthropogenic impacts on groundwater resources and informing relevant management options 
and policies to enable sustainable use. Activities over the past years have developed and applied 
methods for studying groundwater level trends and spatiotemporal patterns in the main alluvial 
aquifer systems of the MDB. A brief description of these analyses and key findings are included in 
this section. More detailed description of the analyses and results are reported in the following 
journal papers and report: 

• Summary of main alluvial aquifers and groundwater use potential in the Murray–Darling 
Basin (Rojas et al., 2021) 

• Trends in Groundwater Levels in Alluvial Aquifers of the Murray–Darling Basin and Their 
Attributions (Fu et al., 2022) 

• Groundwater level trends and aquifer prioritisation in the Murray-Darling Basin (Rojas et 
al., 2022)    

• Spatial and Temporal Patterns of Groundwater Levels: A Case Study of Alluvial Aquifers in 
the Murray–Darling Basin, Australia (Fu et al., 2023) 

• Summary Report – Year 2 Project RQ8b: Groundwater as an adaptation option to current 
water resources management (Rojas et al., 2023b) 

2.2 Groundwater Trend Analysis 

Trends in groundwater levels were analysed using three popular trend analysis approaches. These 
include a) the non-parametric Kendall’s test b) Linear trend and c) the Two-Period Comparison and 
Innovative Trend Analysis Test. These methods were employed to detect long-term trends (1971-
2021) in annual mean/minimum/maximum depth to water table (DTW) in 910 bores across the 22 
alluvial resource units of MDB. Bore DTW data were accessed using the National Groundwater 
Information System (NGIS) Version 1.7.0 last updated in July 2021 (BOM, 2022).  

There is clearly an overall increasing trend in DTW (or decline of groundwater level) for the MDB 
alluvial aquifers during the last 50 years (1971–2021), regardless of the groundwater level statistic 
(mean, minimum, and maximum annual values) or the trend detection methods. About 90–95% of 
groundwater bores show an increasing trend in depths, of which 84–87% are statistically 
significant at α = 0.05. In contrast, only 7–9% of groundwater bores show a decreasing trend in 
depths, and 4–5% are statistically significant. 

In terms of trend magnitudes, these range from −0.25 to about +1.00 m/year across all three 
annual groundwater level statistics (mean, minimum, and maximum annual values) and the three 
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analysis techniques for the 50-year period assessed (1971–2021). The median and mean values for 
the 910 groundwater bores are 0.09 and 0.11–0.13 m/year, respectively. While the maximum 
trend magnitude can be as high as +1.0 m/year, the 95th percentile is about 0.3–0.4 m/year (Table 
1 ). The 5–10% negative trend magnitudes are consistent with the trend significance results.   

The analysis implemented a methodologically consistent and regional trend analysis of 
groundwater levels in the main alluvial aquifers of the MDB using consistent data for a 50-year 
time window contained between years 1971-2021. This included data from 910 observation bores, 
out of nearly 1200 available bores for monitoring in the MDB, with at least two records per year to 
quantify mean, minimum and maximum DTW per bore. For spatial consistency, we performed the 
trend analysis for each groundwater resource unit within the main alluvial systems in the MDB. 
The analysis also attempted to disentangle regional trend patterns by attributing potential drivers 
to these regionalised trends in groundwater levels.  

Table 2 shows the number of bores with statistically significant increasing or decreasing trends 
across the MDB based on the three different methods. It shows that about 90–95% of 
groundwater bores show an increasing trend in depths, of which 84–87% are statistically 
significant at a α=0.05 level. In contrast, only 7–9% groundwater bores show a decreasing trend in 
depths of which only 4–5% are statistically significant. 

Table 1 Statistics of groundwater level trend magnitudes in eight alluvial systems of the MDB (m/year) 

Methods Variables Min P5 P10 P25 Med Mean P75 P90 P95 Max 

β 
Mean DTW -0.22 -0.01 0.01 0.04 0.09 0.13 0.20 0.30 0.35 1.01 
Min DTW -0.22 -0.01 0.01 0.04 0.09 0.12 0.18 0.26 0.29 0.99 
Max DTW -0.22 -0.01 0.00 0.04 0.09 0.14 0.21 0.33 0.43 1.01 

Linear 
Mean DTW -0.23 -0.01 0.01 0.05 0.09 0.13 0.20 0.30 0.37 0.99 
Min DTW -0.25 -0.01 0.01 0.05 0.09 0.12 0.19 0.26 0.30 0.98 
Max DTW -0.22 -0.01 0.01 0.04 0.09 0.14 0.22 0.33 0.43 1.01 

S-slope 
Mean DTW -0.22 -0.01 0.01 0.04 0.09 0.12 0.20 0.28 0.33 0.83 
Min DTW -0.25 -0.01 0.01 0.04 0.09 0.11 0.18 0.25 0.29 0.82 
Max DTW -0.20 -0.01 0.01 0.04 0.09 0.13 0.20 0.31 0.40 0.83 

 

Table 3 shows the mean and maximum trend magnitude for the annual DTW recorded in 14 
resource units that fulfilled the data filtering process (40 years with at least two records per year 
per bore). It shows that mean trend magnitudes vary between 0.03 m/y and 0.19 m/y, with an 
average across resource units equal to 0.11 m/y. Resource units experiencing above average 
increasing trends for mean annual DTW corresponds to: Lower Gwydir Alluvium (GS24), Lower 
Murrumbidgee Deep Alluvium (GS28b), Lower Namoi Alluvium (GS29), Mid-Murrumbidgee 
Alluvium (GS31), Upper Namoi Alluvium (GS47), Upper Condamine Alluvium-CCA (GS64a) and 
Goulburn-Murray: Sedimentary Plain (GS8c). 
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Table 2 Numbers of bores with decreasing and increasing trends in DTW and statistical significance level in eight 
alluvial systems of the MDB. 

Methods  Variables  Sig Decrease  Decrease  Increase  Sig Increase  

Kendall test  

Mean DTW  39  27  55  789  

Min DTW  37  32  49  792  

Max DTW  40  36  64  770  

Linear trend  

Mean DTW  41  22  49  798  

Min DTW  42  28  43  797  

Max DTW  44  30  62  774  

Two-period comparison  

Mean DTW  41  28  55  786  

Min DTW  36  37  51  786  

Max DTW  42  36  74  758  

 

Table 3 Groundwater level trend magnitudes (m/y) per resource unit for the mean and maximum annual DTW, 
number of bores showing statistically significant decreasing trends adapted from Rojas et al. (2023a). 

Code  Resource Unit  Area  
Km2  

No. 
bores  

Mean  
Trend  
(m/y)  

Max  
Trend  
(m/y)  

Bores  
showing 
decreasing 
trend  

GS29  Lower Namoi Alluvium  7115  155  0.19  0.68  98%  
GS28b  Lower Murrumbidgee Deep 

Alluvium  
32438  36  0.18  0.50  81%  

GS47  Upper Namoi Alluvium   3573  174  0.16  0.53  95%  
GS8c  Goulburn-Murray: SP  21929  55  0.15  0.59  100%  
GS64a  Upper Condamine Alluvium 

(CCA)  
4346  74  0.12  0.48  91%  

GS24  Lower Gwydir Alluvium  2340  48  0.12  0.35  73%  
GS31  Mid-Murrumbidgee 

Alluvium  
1473  90  0.12  0.35  100%  

GS44  Upper Lachlan Alluvium  12963  56  0.11  0.42  100%  
GS27b  Lower Murray Deep 

Alluvium  
17803  4  0.11  0.36  75%  

GS25  Lower Lachlan Alluvium  25283  31  0.10  0.33  84%  
GS64b  Upper Condamine Alluvium 

(Tributaries)   
3778  73  0.06  1.01  93%  

GS28a  Lower Murrumbidgee 
Shallow Alluvium   

32438  12  0.03  0.09  67%  

GS46  Upper Murray Alluvium  489  6  0.05  0.16  83%  
GS8a  Goulburn-Murray: SIR  6580  96  0.04  0.21  89%  
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Figure 4 Spatial distribution of groundwater level trend magnitude and trend significance obtained from the Kendall 
test across the study area (a, b), Namoi and Gwydir region (c, d) and Lachlan and Murrumbidgee region (e, f).  

A statistically significant increasing trend obtained from the Kendall test can be observed across 
the MDB in Figure 4. Most groundwater bores with increasing DTW have a magnitude in the range 
of 0–0.3 m/year. There were far fewer bores with decreasing DTW (increasing water levels). While 
trends were statistically significant, magnitudes for these bores were generally in the lower -0.2–0 
m/year range.  
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2.3 Clustering Analysis 

A subsequent analysis investigated spatial patterns of groundwater level trends using two 
clustering methods. Clustering analysis was used to answer questions including: What are the 
dominant patterns in groundwater level trends? How robust are these patterns to different 
clustering techniques? What is the performance of these clustering techniques? Is there a spatial 
configuration for these patterns? What is the impact of the Millennium Drought on these 
patterns? By answering these questions, the clustering analysis helps to interpret the observed 
trends and its relationship with potential causal factors.  

Two popular clustering analysis methods in the literature, hierarchical clustering analysis (HCA) 
and the self-organizing map (SOM), were used in this study to investigate the temporal patterns of 
groundwater levels. Hierarchical cluster analysis (HCA) is an algorithm that seeks to build a 
hierarchy of groups or clusters so that each cluster is distinctive from other clusters but the 
elements within the same cluster are broadly similar. The results of hierarchical clustering can be 
presented as a dendrogram, which is a diagram with a tree structure representing the hierarchical 
relationship between elements. Figure 5 shows the dendrogram of DTW level with 910 bores used 
in this study. The six clusters/groups are chosen for this study based on the distances among them 
and their temporal patterns. 

 

 
 

Figure 5 Dendrogram of groundwater levels from 910 bores, separated into six clusters (C1-C6) with the hierarchical 
clustering algorithm. 

Distinct temporal patterns in mean values of the standardized DTW for the six clusters are shown 
in Figure 6. The vertical blue dashed lines represent the Millennium Drought period in 1997–2009, 
a severe and prolonged dry period in southeast Australia. The rainfall, streamflow, groundwater 
level and storage, wetland, lakes and their relationships have changed significantly, before, during 
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and after the Millennium Drought (Fu et al., 2023). The geographic locations of the cluster 
members are shown in Figure 7. 

 

Figure 6 Time series of annual mean standardized groundwater level (depth to water level, DTW) from six clusters 
based on hierarchical cluster analysis (Fu et al., 2023). The vertical blue dashed lines represent the Millennium 
Drought period from 1997–2009. 

 

Figure 7 Spatial distribution of hierarchical clusters. 

The SOM analysis resulted in six similar clusters, corresponding well to the patterns found in the 
hierarchical analysis. This implies a robust identification of the main temporal patterns of 
groundwater levels in the study area. 

2.4 Key findings 

The results of the groundwater level trend analysis showed an overarching declining trend across 
all alluvial aquifers analysed. The analysis showed: 

1. An overall declining groundwater level trend across alluvial aquifers attributable to 
changes in recharge from rainfall, potential evaporation, and groundwater extraction. The 
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trend was consistent regardless of the trend detection method and indicators used (mean, 
minimum, maximum annual values). 

2. The methods employed show similar statistical significances and magnitudes, but 
differences were observed. 

3. The annual minimum DTW had a smaller trend magnitude than annual mean DTW, and the 
annual maximum DTW had a larger trend magnitude than mean DTW. 

4. Irrigation with surface water is responsible for some of the rising trends in groundwater 
level, most likely due to localized processes in shallow aquifers through irrigation induced 
recharge. 

The clustering analysis showed that: 

1. Six dominant clusters were found that could explain the groundwater level trends in the 
Murray-Darling Basin. Interpretation of each of these patterns indicates how the 
groundwater time series in each cluster behaved before, during and after the Millennium 
Drought.  

a) There are 454 groundwater bores (about 50% of the total 910) in Cluster 1 (C1 in 
Figure 6), which show continuous declines in groundwater levels from 1971–2019, 
i.e., before and during the Millennium Drought (MD) periods. However, the 
groundwater level is relatively stable after the MD. Partial recovery of groundwater 
level during the 2011–2012 wet years is also observed. 

b) There are 236 groundwater bores (~26%) in Cluster 2, which show a stable 
groundwater level in 1971–1996 before the MD period, followed by a declining 
trend during and after the MD periods. 

c) There are 62 groundwater bores (~7%) in Cluster 3, which show significant 
groundwater level declines in 1971–1996 before the MD period but are relatively 
stable during and after the MD periods. 

d) There are 65 groundwater bores (~7%) in Cluster 4, which show overall 
groundwater level declines for the entire study period. However, this time series 
shows the greatest fluctuation, implying stronger sensitivity of groundwater level to 
rainfall anomalies. The 2011–2012 wet years lead to the biggest rises in 
groundwater levels for this cluster. 

e) There are 53 groundwater bores (~6%) in Cluster 5, which show rising groundwater 
levels in 1971–1996 before the MD period and declines during and after the MD 
periods. The rising trends in 1971–1996 could be due to irrigation, followed by the 
declines due to reduced recharge and increased pumping during the MD. 

f) There are 40 groundwater bores (~4%) in Cluster 6, which show similar 
groundwater level rise as seen in Cluster 5 but a relatively stable levels during and 
after the MD. The underlying physical processes could be due to additional 
irrigation-induced recharge before the MD and reduced irrigation and recharge due 
to lower surface water availability and rainfall. 
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2. The two clustering methods produced similar patterns, indicating the robustness of the six 
dominant patterns that have been identified.  

3. The patterns that are predominantly found in each geographical area were identified. In 
the Condamine region all patterns are represented, in the Gwydir/Namoi region Clusters 1, 
3, and 4 are most common, and in the Lachlan, Murrumbidgee, Murray and Goulburn 
region Clusters 2, 5 and 6 dominate. 

4. The six patterns identified in this study transcend resource unit boundaries. Conversely, 
bores in proximity could exhibit different temporal variability. 

5. The MD from 1997 to 2009 had a clear impact on groundwater level temporal variability 
and trends. Diverse post-drought responses were found in bores with similar groundwater 
patterns before and during the drought. 

6. The spatial distribution of the temporal patterns shows that different areas had varying 
responses to severe drought and to post-drought recharge and recovery. 
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3 Causal attribution analysis 

3.1 Scope 

A causal attribution analysis has been undertaken to explore factors that contribute to the 
observed trends in groundwater levels. This analysis investigates covariates such as rainfall, 
potential evapotranspiration, flood events and groundwater extractions, and evaluates whether 
trends in groundwater levels could be dominantly attributed to changes in any of the covariates. 

A machine learning model is trained to predict groundwater levels based on the set of climate and 
anthropogenic predictors. The model is then queried for the most influential inputs in generating 
accurate predictions at certain times or locations. An explainable artificial intelligence (AI) 
algorithm (SHAP) is used to determine which variables cause a greater response in groundwater 
level predictions across the resource units for the entire study period. This analysis is then 
examined at higher resolution to identify the contribution of each predictor to each monthly 
prediction, revealing varying patterns of influence across space and time. 

To compromise between the objectives of 1) investigating long-term trends and 2) distinguishing 
the influences from both climate and groundwater extractions, two models are built here: 

• A longer-term model (32 years) simulates groundwater levels from 1988-2020 at 14 
resource units, investigating changes in groundwater influences over the periods before, 
during and after the Millenium Drought. This model uses the number of groundwater 
extraction bores as a proxy for the volume of groundwater extracted, since historical 
extraction data are not readily available everywhere and for the full period.  

• A shorter-term model (14 years, 2007-2021) includes measured groundwater extraction 
data instead of the proxy of number of bores. However, due to the restricted amount of 
data available in this time series, this model is only able to represent six bores from near 
the end of the Millenium Drought onwards. It will therefore not be useful for assessing 
long-term changes or variations over all resource units. 

Although the shorter-term model is limited both temporally and spatially compared to the longer-
term model, it provides some insights on potential direct analysis with groundwater extraction 
data and the relative efficacy of the number of groundwater bores as a proxy for extraction data. 

3.2 Methods 

3.2.1 Data 

Depth to groundwater level data is gathered into a collection of monthly time series for bores 
within each resource unit, from January 1971 to October 2021. The time series are scaled to a 
range of [0,1] by individual bore before averaging within each resource unit to provide one 
monthly value per resource unit. The values are then inverted to provide groundwater levels 
rather than depths – a more intuitive variable to work with, where a positive increase in the 



 

Groundwater as an adaptation option to current water resources management  |  25 

variable corresponds to a vertical increase in groundwater level. Trends and fluctuations for all 
resource units are evident in Figure 8. 

 

Figure 8 Groundwater level data 1971-2021 for 14 resource units comparing time series trends and magnitudes 
highlighting level declines during the Millenium Drought and partial recovery after 2010. 

Climate data for precipitation and potential evapotranspiration (PET) were also aggregated by 
resource unit and month. In addition to rainfall at the current month, aggregations of rainfall data 
were included in the input data set to represent antecedent soil moisture conditions (3-month 
rainfall average) and longer-term climate conditions (12-month average). Overbank flooding 
events were represented by a monthly time series of percentage flood inundation for each 
resource unit based on Landsat data, beginning in January 1988. 

Groundwater extraction data were obtained from relevant state government agencies (NSW, Qld 
and Vic). The original data have an extraction site ID, longitude, latitude and extraction volume. 
The monthly time series of groundwater extraction data used in this study are sums of all 
groundwater extraction volumes from all extraction locations within a specific resource unit during 
a specific month. Groundwater extraction data was available from November 2006 for four 
resource units only, increasing to 12 resource units by October 2012.  

The cumulative number of extraction bores drilled in each aquifer (1971-2020) was calculated 
from National Groundwater Information System data (BOM, 2023). Due to the longer period 
available, it was used in this study as a proxy for the increase in groundwater pumping over time 
as the resource is developed. The number of production bores has increased in the last 50 years 
across all studied alluvial aquifers, with a marked increase in the 2000s coinciding with a cap on 
surface diversions and the Millennium Drought when surface water became very scarce (Fu et al., 
2022). 

Data for variables with particularly skewed distributions – the flood extent percentage and 
groundwater extractions - were log-transformed before being used in the model. One large spike 
in the extraction measurements was removed. All numerical input data were scaled into the range 
[0,1] by resource unit (except year, for which the scale is common across all resource units). The 
month variable was converted into a seasonal variable with four categories. 

3.2.2 Machine learning models 

A machine learning (ML) model is used for the main causal attribution analysis. A feed-forward 
neural network model is trained and tested to relate groundwater levels to climatic and 
anthropogenic drivers at a monthly timestep. One ML model covers the multiple resource units, 
sharing information between the regions whilst making predictions for groundwater levels on a 
resource unit scale. The scalability of including any number of resource units in a single model is a 
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benefit of ML models, as is the ability to easily add or remove predictors or aggregations of 
variables for model testing. 

The predictor data consists of monthly values for each resource unit of current and past 
precipitation (current month’s rainfall, 1 month lagged, average of past 3 months, average of past 
12 months rainfall), potential evapotranspiration, year, season, resource unit, percentage flood 
extent and the number of extraction bores. The output data (target variable) is the average 
groundwater level at each resource unit (averaged over potentially multiple bores per resource 
unit and multiple measurements per month). Model validation is undertaken to optimise the 
network architecture, followed by model training to optimise the network weights. This data set 
consists of 4754 data points – between 184 and 393 per resource unit. 

For comparison, a shorter-term model is also created that includes actual groundwater extraction 
observations. The measured extraction data is included as a predictor, replacing the ‘number of 
extraction bores’ proxy variable used in the model above. As measured extraction data is currently 
available only in certain regions, with the earliest bores beginning in 2006, this restricts the scope 
considerably if this data is to be included.  

Six resource units have groundwater extraction data beginning by June 2007: GS24, GS27b, GS28a, 
GS28b, GS29, and GS47. The second, shorter-term model is created using the method described 
above but including only these six resource units, which have consistent extraction data for the 15-
year period June 2007 – June 2022. This data set consists of 885 observations - between 122 and 
163 data points per resource unit. The extraction volume at the current month, as well as a sum 
over the previous 12-months, are used as predictors at each time step, with these two variables 
replacing the ‘number of extraction bores’ variable. Otherwise, all predictor and target variables 
are as described above for the main causal analysis model. The results of this model are presented 
in the Appendix. 

3.2.3 Causal analysis with explainable ML 

The trained neural network model is used in a causal analysis framework to investigate the impact 
of each input variable on the production of groundwater level predictions. This sensitivity analysis 
is conducted over the complete data set, as well as at specific locations and times. Sub-periods 
(decades) and locations (resource units) are investigated to determine if the dominating causes of 
groundwater level trends have changed over time or differ between regions. The machine learning 
techniques of permutation feature importance, partial dependence plots and SHapley Additive 
exPlanations (SHAP) are used.  

Permutation feature importance determines the decrease in model prediction performance when 
a single input variable is randomly shuffled or is no longer included in the model. This indicates 
which variables are most important overall for producing accurate groundwater level predictions. 
A single ranking represents the data relationships over all regions and times. 

Partial dependence plots show the marginal effect each feature has on the predicted outcome of 
an ML model. The individual effects of each observation, as well as the average effect of each 
feature, are shown. These plots are used to determine if the relationships between input and 
output are linear, monotonic, or potentially more complex. Flatter lines indicate less impact of the 
feature on the predictions. Interactions between predictors are not considered. 
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SHAP is a post-hoc explainable machine learning analysis based on concepts from game theory. 
The contributions of each input to the overall result are quantified, indicating the impact of each 
feature on the model predictions. The summarised relevance of each variable on predicting the 
groundwater levels (global impact), as well as the impact of individual measurements on the 
model’s predictions (local impact), are given. Both the permutation feature importance and SHAP 
methods consider interactions between the input variables in producing the predictions.  

3.3 Results 

3.3.1 Neural network predictions 

The neural network predictions for the longer-term analysis are shown in Figure 9 for each of the 
14 resource units. These predictions are produced from a single model trained on climate and 
anthropogenic data from all resource units combined. With the inclusion of a resource unit 
identifier as an input variable, the model can produce unique predictions for each region.  

 

Figure 9 Predicted groundwater levels from the ML model (blue) in comparison with monthly averaged observed 
groundwater levels (coloured lines) for 14 resource units. A separate prediction is made by the model for each 
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resource unit. Groundwater levels have been scaled into the range [0,1] to eliminate differences in vertical scale 
between the regions. 

On Figure 9, the predictions (blue lines) generally follow the observed groundwater level trends 
and fluctuations (coloured lines), although in some cases they do not accurately follow the peaks, 
troughs or higher resolution groundwater fluctuations. These inaccuracies indicate the model is 
not capturing all the influences on groundwater levels, either because the aggregations of data 
used are removing important information or because influential factors are not entirely 
represented by the input variables. One of these omitted factors is groundwater extraction data, 
which is not available for the timescale or geographical coverage of this model. 

3.3.2 Permutation feature importance 

The importance of the input variables for making accurate predictions are ranked by measuring 
the decline in model performance when each variable is randomly shuffled. The results, shown in 
Figure 10, indicate overall importance over the entire period of data and geographical coverage of 
the study. It was found that the number of extraction bores (proxy for groundwater development) 
was the most influential variable for groundwater level predictions in this model.  

The next two highest-ranked variables are resource unit and Year, which represent spatial and 
temporal distinctions amongst the time series, potentially reflecting spatial or temporal variations 
not captured by other variables. For example, geology may be the most important factor 
distinguishing resource units from each other, yet as this variable is not included in the model and 
the importance of it would be attributed to the resource unit variable.  

 

Figure 10 Permutation feature importance results – higher inputs on the y-axis are deemed more important overall 
for accurate groundwater level predictions across the entire region and period of the study. 

Flood extent and annual precipitation are the next most important variables universally. These are 
followed by season and potential evapotranspiration, both of which provide information for 
seasonal fluctuations. Interestingly, the current and recent rainfall were of least overall value for 
predicting groundwater levels in this model. This may be because flood extent and annual 
precipitation are already capturing the rainfall effect, or it may be an artifact of averaging over 
time periods and regions, or the time lag that naturally occurs between rainfall and recharge 
processes. 
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3.3.3 Partial dependence plots 

The partial dependence plots in Figure 11 show the marginal relationships between observed 
features and observed groundwater levels. A negative or downward trend (dependent variable 
decreasing as independent variable increases) suggests that higher values of the predictor feature 
reduce the predicted outcome; for example when the number of bores is higher, the groundwater 
level would be lower. A flat line on the plot indicates that the feature has little or no overall impact 
on the prediction, that is the prediction would not be expected to change significantly if this 
variable were to increase or decrease. 

 

Figure 11 Partial dependence plots. Blue lines indicate the individual effects of each observation, orange lines show 
the average effect over all observations. 

The blue lines represent individual observations, and the orange is the average of all observations. 
Where the blue lines are relatively parallel, the feature appears to have a similar impact on 
groundwater level predictions at all times and locations. On the contrary, in some cases the blue 
lines cross and bend – indicating that the same feature has differing impacts on groundwater 
levels for different observation locations and times. For example, on the right-hand panel of Figure 
11, when flood extent is low (but non-zero) the groundwater level continues to decline at some 
locations, though for other observations (perhaps at other places or times) even a small amount of 
flood extent appears to raise the groundwater level. It is these complexities that can be 
investigated with the SHAP analysis. 

3.3.4 Variable influences on predictions 

The SHAP analysis investigates the contribution of each input variable to each individual 
prediction. Larger SHAP values indicate a greater influence of the input variable on the prediction, 
while the sign of the SHAP values (+/-) shows the direction in which the predictor affects the 
outcome. 

Figure 12 displays the SHAP values for all input variables and all predictions split into three time 
periods. Observations from 1988-1998 are shown on the left panel, from 1999-2009 in the middle, 
and 2010-2020 on the right panel. 

Each line represents an individual observation (set of input values) and the prediction the model 
makes based on this input. Beginning at the bottom of the plot and moving upwards, the 
prediction changes by a certain amount (the SHAP value) as it passes each predictor. The 
cumulative influence of all predictors, and therefore the final model output, is reflected by the 
point where each line crosses the bar at the top of the plot. 



 

30  |  CSIRO Australia’s National Science Agency 

The model predictions in the first period (left panel of Figure 12) tend to be higher groundwater 
levels than the predictions on the right panel. Moving upward on the plot, noticeable differences 
in predictions begin with the impact of PET and annual precipitation. These differences continue to 
grow with the effects of time (year), flood inundation, location (resource unit), and groundwater 
development (number of extraction bores). 

  

 

Figure 12 SHAP results showing the influence of each predictor on individual predictions. The y-axis is ordered by 
the global influence of predictors. 

The changing influence of the variables throughout the study period can be seen by plotting SHAP 
values over time, as shown in Figure 13. Results are separated by resource unit on the left panel. 
The SHAP values tend to follow similar trends for all resource units, but it is evident that some 
variables are more influential at certain resource units. Over time, changes in the whole region are 
evident. 

 

Figure 13 SHAP values plotted over time, left panel shows SHAP values for individual resource units, right panel 
shows SHAP values across all units for three periods (before, during and after the Millenium Drought). 

On the right panel of Figure 13, SHAP values are combined across all resource units for three time 
periods. The time segments correspond to before (purple), during (green) and after (yellow) the 
Millenium Drought. The influence of each variable across all regions is shown to change over time. 
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As time proceeds, the number of extraction bores has an increasingly negative influence on 
groundwater levels. During the Millenium Drought (green boxes), the low annual precipitation and 
few flooding events were more influential on groundwater level predictions than these variables 
were before or after the drought (mean is further from the zero line). After the drought, flooding 
played more of a role in increasing groundwater level predictions than it did before the drought.  

Changes over time in the impact of a single variable, in relation to the magnitude of the variable, 
are indicated with a scatterplot of SHAP values. In Figure 14, all SHAP values for annual 
precipitation, flood extent and PET are plotted against the actual values of the same variable and 
coloured by year. Both high and low values of annual precipitation have greater impact on 
groundwater level predictions than less extreme values, as expected. Both the highest and lowest 
impacts have occurred in recent years (pink data points), indicating the increased variations in 
antecedent rainfall conditions, as well as the increased response of groundwater levels to these 
conditions, in recent years compared to the 1980s and 90s. The same patterns are seen for flood 
extent and PET – more extreme values occurred in recent years, and these had greater influence 
on the groundwater level predictions. At the end of the study, both very wet years and very dry 
years have more influence (in opposite directions) on groundwater levels than at the start of the 
study. The same pattern holds for overbank flow and PET. 

 

 

Figure 14 SHAP values for annual precipitation, flood extent and PET against actual values and coloured by year 
(early to recent = blue to pink). In recent years, the influence of these variables on predicted groundwater levels is 
stronger. 

In summary, the longer-term SHAP analysis indicates: 

• The monotonically decreasing SHAP values for the ‘number of extraction bores’ variable 
show that this variable dominates in influencing the long-term trend component of 
groundwater level predictions in this model, and that the influence is strengthening over 
time. 

• The cyclical SHAP values of climate variables such as precipitation and potential 
evapotranspiration indicate their role on the seasonal dynamics of groundwater level 
predictions. 

• Values of climate variables (annual rainfall, PET, flooding) are becoming more extreme over 
time (higher and lower values), and the SHAP values indicate the magnitude of influence 
(both +/-) of these variables on groundwater levels also increases over time.  

• SHAP values for climate variables such as annual rainfall and flooding became more 
negative during the Millenium Drought indicating the expected influence on lowering 
groundwater levels, before their positive impact increases following the drought.  
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Results of the shorter-term analysis are given in the Appendix. 

3.4 Limitations 

The causal analysis assessment comes with certain limitations in the data and model: 

• The monthly datasets are aggregations over several observations within each month. If the 
values were highly variable during the month, the average will not represent either the 
high or the low points.  

• There is no indication of the alignment of the data sets with each other - for example, in 
any given month the rainfall measurements may occur after the groundwater level 
measurements and therefore no correlation will exist. 

• The resource unit aggregations are averages of measurements at multiple bores across a 
geographic region. We have seen from the cluster investigation in Chapter 2 that a defined 
cluster structure exists in the data. This means that within most resource units 
groundwater levels will be increasing or decreasing at different rates at various bores. By 
aggregating the data to the resource unit level, these distinctions of cluster trends are lost. 
The climate and groundwater extraction information (also aggregated) are assumed to 
apply across the region. 

• There are two major challenges with the groundwater extraction data for this causal 
attribution investigation: 1) the earliest available metered groundwater extraction volumes 
are 2006, which limits the long-term analysis, and 2) there are unmetered and unreported 
groundwater extractions in these regions meaning that the uncertainty in the extraction 
data is unknown.  

• In the longer-term model, the ‘Year’ and ‘Number of bores’ variables are correlated. The 
main difference is that ‘Number of bores’ is different for each resource unit, so whilst it is 
generally monotonically increasing as ‘Year’ is, some resource units will be increasing at a 
more rapid rate, and some may be steady over multiple years.  

• As this is a time-series based analysis, a dynamic ML model such as the long-short term 
memory model (LSTM) would generally be preferred. This is a deep learning model 
specifically designed for time series analysis that can capture short and long-term trends in 
the data by cycling sequentially over long series of inputs. However, the LSTM requires 
continuous time series for all variables (no missing data) which were not available in this 
study. The LSTM is also not compatible with explainable AI frameworks such as SHAP used 
for post-hoc causal analysis, hence the use of the feed-forward neural network in this 
study. The creation of lagged and long-term averaged input variables attempts to bring a 
dynamic component to this model, allowing predictions to be based on past conditions. 

3.5 Key findings 

The input variables are found to influence groundwater level predictions with different timing, 
direction and magnitude at each resource unit. Specific findings of the causal analysis are: 
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• Overall, ‘the number of extraction bores’ – a proxy for the development of groundwater 
resources – was found to be the most influential input variable for predicting groundwater 
levels over the long term. 

• The high importance of the resource unit variable in both short and long-term models 
indicates  strong regional differences in groundwater responses to the predictor variables. 

• In the short-term model, the annual extractions and flooding information became the most 
influential inputs (along with resource unit), when the number of bores variable was not 
used. 

• Climate variables influence groundwater predictions more at some resource units than 
others, and this influence varies over time. The magnitude of influence of climate variables 
such as PET and wet/dry years, has increased over time (both +/-) across all areas.  

• Overbank flooding has more impact than precipitation on groundwater level predictions, 
indicating flood events are a more influential source of recharge than rainfall. Annual 
precipitation is more influential than shorter term precipitation values.  

• The number of extraction bores is shown to have an increasingly negative influence on the 
prediction of groundwater levels over the study period. SHAP values for the number of 
extraction bores continued to decline following the drought, suggesting that the impact of 
groundwater development did not recover afterward. However, this is likely an artifact of 
the variable type – a cumulative sum of the number of bores. As bores are not often 
removed (or not recorded if they are), then this number will remain stable or increase even 
if actual extraction volumes fluctuate year to year. 

Although the shorter-term model including actual groundwater measurements has temporal and 
spatial limitations compared to the longer-term model, it foreshadows the insights that could 
emerge if groundwater extraction data were more widely available. With this model, it was shown 
that each bore has a differing relationship between groundwater extractions and groundwater 
levels, and these relationships vary over time – unlike the relationships in the longer-term model 
between number of bores and groundwater levels which showed similar patterns across all bores 
and a constantly increasing influence over time.  
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4 Groundwater resilience, stress and 
sustainability analysis 

4.1 Scope 

This section reports an integrated assessment of three characteristics of alluvial aquifers in the 
MDB namely resilience, stress and sustainability as defined below: 

• Groundwater resilience is the ability of a groundwater system to maintain reserves and its 
essential functions despite major anthropogenic disturbances. 

• Groundwater stress is the ratio between the use and availability of groundwater 
resources. 

• Groundwater sustainability is the beneficial use of groundwater that supports present and 
future demands while ensuring that unacceptable environmental, economic and social 
consequences do not occur. 

Groundwater resilience, stress and sustainability characteristics were quantitatively evaluated by 
combining three lines of evidence as described in the following section. Detailed description of the 
methods are results are documented in a previous report and a journal article (Rojas et al., 2022; 
Rojas et al., 2023a). 

4.2 Methods 

Figure 15 shows the conceptual framework implemented for the analyses of resilience, stress and 
sustainability characteristics to support opportunities for the improvement of groundwater 
management. The concepts of groundwater resilience, stress and sustainability were evaluated 
using: a) long-term trend analysis of groundwater levels; (b) calculation of groundwater footprint 
indices considering volume and quality; and (c) an explicit comparison of groundwater 
management areas in terms of groundwater usage, sustainable use, storage volumes, presence 
and diversity of groundwater-dependent ecosystems (GDEs), and buffering capacity to absorb 
changes in recharge rates. Each line of evidence used a series of groundwater indicators as proxies 
for resilience, stress, and sustainability, noting that the main objective was to obtain a basin-scale 
perspective. 

 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/groundwater-management
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/groundwater-management
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Figure 15 Conceptual framework to identify opportunities to improve groundwater management in the alluvial 
aquifers of the MDB. White boxes represent the lines of evidence used to explore the concepts of resilience, stress, 
and sustainability through their corresponding proxies (blue boxes). 

Groundwater trend analysis described in the previous section underpinned the analysis of the 
metrics relevant for resilience analysis. Groundwater footprint was calculated as the ratio of 
annual groundwater abstraction to net annual recharge (recharge minus groundwater 
contribution to environmental streamflow) multiplied by areal extent of the aquifer. Effect of 
groundwater quality on stress was accounted by including different salinity classes in the 
computation of stress.  

Indicators of aquifer development and responsiveness were used to inform aquifer sustainability. 
Aquifer development and responsiveness indicators modified from past studies (Barron et al, 2011 
and Currie et al., 2010) were used to evaluate sustainability considering both aquifer performance 
and management perspectives. Aquifer development score was used to implement a consistent 
approach to quantify the relative development status of different resource units in the MDB by 
considering actual groundwater use and the long-term average sustainable diversion limit of each 
resource unit in relation to the maximum use and maximum limit across all units. The aquifer 
development score also weighed in the occurrence and diversity of groundwater-dependent 
ecosystems in the resource unit. Two widely used diversity indices, namely, Shannon and Simpson 
Diversity Indices (Gorelick, 2006; Spellerberg & Fedor, 2003) were adapted to use class areas 
instead of species counts within each groundwater resource unit. 

Similarly, the aquifer responsiveness score considered actual groundwater use in a resource unit in 
comparison with the long-term average sustainable diversion limit of that unit while weighing in 
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the recharge buffering capacity of the aquifer. Recharge buffering capacity represents the capacity 
of the aquifer to buffer potential changes in recharge rates. 

Both indicators can be combined to obtain a numerical ranking following the standardisation 
process described in Barron et al. (2011). Additionally, an ordination approach was employed 
(Barron et al., 2011) to rank groundwater resource units as follows: developed aquifer systems 
(low responsiveness and high development scores); responsive aquifer systems (low development 
and high responsiveness scores); and relevant aquifer systems (high development and high 
responsiveness scores).  

4.3 Key findings 

Long-term trend analysis indicated that nine groundwater resource units show above-average 
declining trends in groundwater levels (Table 3), with a high number of observation bores showing 
statistically significant declining trends and high depletion rates, thus pointing towards 
groundwater resilience issues. Groundwater footprint assessment indicated that three 
groundwater resource units are under stress, mainly driven by groundwater extraction and 
contributions to environmental streamflow (Figure 16). Including data on groundwater salinity in 
the assessment adds substantial pressure to the groundwater resource units.  

 

Figure 16 Groundwater stress indices for groundwater resource units while considering groundwater use without 
considering salinity classes. 
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Figure 17 Development, responsiveness and numerical relevance scores of groundwater resource units using (a) 
Simpson Diversity Index (SDI), (b) area-weighted SDI, (c) SDI using moderate to high GDE potential area, (d) area-
weighted SDI using moderate-to-high GDE potential areas.  

The size of the bubble reflects numerical relevance with small size bubbles reflecting high numerical scores and vice versa (from Rojas et al. 
(2023a)).  

Aquifer development and responsiveness ranked scores, and numerical relevance obtained using 
different weighting schemes are shown in Figure 17. The coloured regions in the panels of Figure 
17 represent the ranking approach. The blue region represents resource units with high-ranking 
development scores and low-ranking responsiveness scores, while the green region represents 
high-ranking responsiveness and low-ranking development scores. The yellow region reflects both 
high-ranking development and responsiveness scores. Based on this approach, two groundwater 
resource units (Shepparton Irrigation Region GS8a and Mid-Murrumbidgee Alluvium GS31) 
consistently displayed high-ranking development and responsiveness scores across various 
weighting schemes as demonstrated in Figure 17. 
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Figure 18 Heatmap representing standardised groundwater indicators of resilience, stress and sustainability for 
groundwater resource units used to manage the main alluvial aquifer systems in the MDB.  

iGF(HS): highly saline areas; iGF(HS+S): highly saline and saline areas; iGF(HS+S+B): highly saline, saline and brackish areas. Solid line boxes identify 
resource units where normalised groundwater indicators for resilience, stress or sustainability are above-average. Dashed line boxes identify two 
resource units where groundwater indicators indicate emergent issues. 

Figure 18 summarises all indicators used for assessing resilience, stress and sustainability 
characteristics for all 22 resource units considered in this study.  

Overall, the analysis showed that: 

1. Eleven (out of 22, Figure 18) groundwater resource units were identified as having 
resilience, stress or sustainability issues across the main alluvial aquifers of the MDB.  

2. The Namoi Alluvium (GS29 and GS47) shows signs of resilience, stress, and potential 
sustainability issues, whereas Mid-Murrumbidgee (GS31) shows resilience and 
sustainability issues. 

3.  The Upper Condamine Alluvium (GS64a), Lower Murrumbidgee Deep (GS28b) and 
Goulburn-Murray: Sedimentary Plains (GS8c) show signs of resilience issues, potential 
stress issues when considering groundwater salinity, and potential sustainability issues due 
to the presence and diversity of GDEs.  
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4. Upper Macquarie (GS45) shows stress driven mainly by significant groundwater discharge 
to streams compared to recharge. In contrast, Upper Lachlan (GS44) shows resilience 
issues driven by declining trends and high depletion rates, and potential sustainability 
issues driven by the high proportion of groundwater use compared to diversion limits.  

5. A similar pattern is observed for Goulburn-Murray: Shepparton Irrigation Region (GS8a), 
with stronger evidence indicating sustainability issues. Despite having above-average 
values across all indicators, the Lower Gwydir (GS24) and Lower Lachlan (GS25) show no 
clear evidence of specific resilience, stress or sustainability issues at the resource unit 
scale.  

6. The exception is for Lower Lachlan (GS25) when considering groundwater salinity. Two 
other specific groundwater management units show signs of emergent resilience (GS64b) 
or sustainability issues (GS26) due to localised maximum declining trends and the presence 
and diversity of GDEs. 

The findings showed the value of simultaneously examining various aspects related to 
groundwater resilience, stress and sustainability to gain broader insights into overall resource 
conditions and identify a wide range of potential issues that can occur to varying extents in 
different areas. This framework can be used to prioritise and focus efforts to address specific 
resilience, stress and sustainability issues in different regions to generate more efficient and 
effective planning and management outcomes. Similar assessments conducted at finer spatial 
scales could identify potential local issues that are not captured at resource unit scale.  
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5 Assessment of managed aquifer recharge 
potential and conceptual site costs 

5.1 Scope 

This section presents a framework for mapping managed aquifer recharge (MAR) potential based 
on a desktop analysis of aquifer and physiographic features to identify areas with a high likelihood 
of feasibility across the main alluvial aquifer systems of the MDB. It builds upon the work by 
Gonzalez et al. (2020) and a subsequent study that covered other regions around Australia (Page 
et al., 2021). The framework used a similar approach to a recent study of NSW groundwater 
resources, but differed in several aspects including assessment scale, reporting units and grid 
resolution, input data, and calculations of potential recharge volumes (Gonzalez and Page, 2024). 
Groundwater level trend analyses, following the work of Fu et al. (2022), rather than static, point 
in time groundwater levels, were incorporated that enabled the potential for MAR to be assessed 
in areas of groundwater depletion. Methods for assessing MAR potential in confined aquifer 
conditions, in addition to unconfined, were developed and applied. A stochastic approach to the 
spatial screening component of the assessment was applied to capture uncertainty in input spatial 
criteria and assumed technical feasibility thresholds. The key assumption for estimating potential 
storage volumes in unconfined aquifers was that the available aquifer space was limited by 
historical water levels (circa 1970s) in areas of long-term declines, and effective porosity. In 
confined aquifers, injection volumes were assumed to be limited by overburden pressure as a 
function of injection rate and aquifer properties (storativity, conductivity and transmissivity) 
calculated through pumping equations. Methods are summarised in this report for brevity, for 
further details refer to the technical metadata report (Gonzalez, 2024). 

A financial cost assessment methodology that accounts for uncertainty was deployed to estimate 
costs of MAR. The spatial assessment of MAR potential in combination with the resilience, stress 
and sustainability assessment (Rojas et al., 2023a) and groundwater level trend work (Fu et al., 
2023; Fu et al., 2022) was used to develop a conceptual MAR scheme for cost estimation. Capital, 
operating and levelized costs were estimated including a summary of the most important and 
sensitive factors influencing costs and uncertainties. To outline the governance arrangements for 
implementation, institutional, policy and regulatory principles are explored (Page et al., 2022). 

5.2 Methods 

5.2.1 Assessment area 

The eight main alluvial aquifer systems in the MDB comprise 22 resource units that together 
account for >75% of average annual groundwater extraction in the Basin (Fu et al., 2022) were 
assessed for unconfined and/or confined storage potential. The aquifers, confinement and 
approximate depths of formations within the resource units were taken from resource 
descriptions (MDBA, 2020a; NSW Government, 2024a), see Appendix Table A.2. 
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5.2.2 Spatial screening method 

Stochastic iterations of spatial criteria thresholds were generated by converting spatial input data 
into uniform, 1 km resolution grids. Binary screening arrays were created for each spatial criterion, 
evaluating the input grids against each threshold iteration. These criteria related to the presence 
and extent of suitable aquifers for MAR, predictors of infiltration or permeability potential, 
groundwater salinity and levels and aquifer properties (Gonzalez, 2024). The proportion of 
iterations meeting all criteria at each grid cell provided a metric of screening confidence, e.g. 
where 25, 50 and 75% of iterations meet all criteria, the screening confidence intervals are 25, 50 
and 75% respectively. The total area meeting all criteria was calculated across various screening 
confidence intervals for resource units. Gridded estimates of potential storage volumes were 
derived from aquifer properties, summing these estimates for assessment units based on different 
confidence levels. A local sensitivity analysis identified the most influential factors affecting the 
screening assessment by systematically omitting each spatial criterion and observing the resulting 
changes. This iterative process helped pinpoint which criteria had the greatest impact on overall 
results. 

5.2.3 Unconfined spatial criteria 

 
The lateral extent of suitable aquifers for infiltration-based MAR was assumed to coincide with 
corresponding groundwater resource unit boundaries with unconfined aquifers. Five other spatial 
criteria were used to screen feasible areas for infiltration-based MAR in unconfined aquifer 
conditions across the resource units assessed. These criteria related to the vertical extent of 
suitable aquifer material, vertical soil hydraulic conductivity, groundwater salinity and available 
storage space in the aquifer as a function of groundwater levels. Plausible ranges for each criterion 
were set within which stochastic realisations were generated based on random uniform 
distributions (Appendix Table A.3). 

5.2.4 Confined assessment criteria 

The lateral extent of suitable aquifers for well injection-based MAR was assumed to coincide with 
corresponding groundwater resource unit boundaries with confined aquifers. As the assessment 
of MAR potential relied on an analytical solution for calculating head responses to well injection, 
two other spatial criteria, groundwater salinity and groundwater head trend, were used to screen 
feasible areas (Appendix Table A.4). 

5.2.5 Groundwater level trend interpolation 

Bore standing water level (SWL) data were sourced from the National Groundwater Information 
System (BOM, 2023). SWL measures the distance from the top of the well casing to the water 
level. Bores were categorized into resource units based on intersecting areas and classified as 
confined or unconfined according to their drilled depths and reported depths of upper and lower 
aquifer formations from resource descriptions (MDBA, 2020a; NSW Government, 2024a). Only 
records with at least two SWL observations per bore each year for 20 of the 50 years from 1971 to 
2021 were included to ensure adequate data for interpolation, particularly in areas with limited 
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records. Annual minimum SWL values were used for trend analysis. Groundwater level trends 
from 1971 to 2021 were analysed using Sen’s Slope estimator, revealing trends grouped by aquifer 
systems like Shepparton and Lachlan. Trends exhibited a normal distribution with filtered outliers, 
resulting in specific ranges for unconfined (-0.28 to 0.27 m/y) and confined systems (-0.08 to 0.47 
m/y). Interpolation was performed using Empirical Bayesian Kriging, generating mean predictions 
and standard errors. 

5.2.6 Groundwater salinity interpolation 

Bore salinities were obtained from the National Groundwater Information System (NGIS) (BOM, 
2023). Bores were categorized into resource units based on their areal extents and assigned to 
confined or unconfined aquifer systems according to drilled depths as aquifer attribution and 
depths of screened intervals were not recorded. Only records with a minimum of four salinity 
observations per bore were included. Salinity data exhibited a positive skew and included outliers 
beyond reasonable groundwater values (electrical conductivity (EC) <1 - >500,000 µS/cm), which 
were filtered to yield an EC range of 131 – 51,260 µS/cm. The 75th percentile salinity values for 
each bore were summarized by aquifer system (Appendix Table A.6). Spatial distribution issues 
prevented interpolation for the Border Rivers deep alluvial aquifer system. For other systems, the 
75th percentile salinity values were interpolated using Empirical Bayesian Kriging with K-Bessel 
variogram models, and mean predictions and standard errors were exported as gridded layers. 
Stochastic realizations of salinity interpolations were created by adjusting predictions within ±1 
standard error, maintaining spatial autocorrelation. 

5.2.7 Potential storage volume calculations 

Potential infiltration volumes for unconfined aquifers were estimated using groundwater level 
decline over 50 years (1971-2021) and specific yield (Sy). Stochastic models provided quantiles of 
groundwater level change based on interpolated mean predictions and standard error. Sy was 
modelled by scaling the minimum and maximum Sy values from the uppermost layers of 
corresponding NSW groundwater models on soil porosity estimates derived from gridded bulk 
density estimates, and regolith thickness estimates (Grundy et al., 2015), reflecting coarser 
materials in thicker aquifers typical of paleochannels (Bates and Jackson, 1980) and deposition 
processes(Dixon, 2015). 

The recharge potential for confined aquifers via well injection was calculated using an inverse form 
of the Theis solution (Theis, 1935), injecting 1 GL over a 100-day cycle. Four injection wells, spaced 
250 m apart, were placed in each 1 km² grid cell, each injecting 2500 m³/d for 100 days. Confined 
aquifer thickness was derived by subtracting the average thickness of the overlying unconfined 
aquifer from the regolith thickness grid (Table A.2). Upper and lower hydraulic conductivity (K) 
values from regional groundwater models were used to rescale a combined aquifer thickness and 
inverse clay content grid (Bates and Jackson, 1980; Dixon, 2015; Freeze and Cherry, 1979). Specific 
storage (Ss) was assumed to be 3.3 x 10⁻⁷/m (Woessner and Poeter, 2020), with storativity being 
the product of Ss and confined aquifer thickness. Effective saturated thickness was assumed to be 
50% of total aquifer thickness. Transmissivity (T) was calculated by multiplying K and effective 
saturated thickness grids. Injection pressure (hydraulic head, m) should not exceed 1.5 times the 
overburden thickness (NRMMC-EPHC-NHMRC, 2009), which was assumed to be the average 
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thickness of the overlying unconfined aquifer (Table A.2). The injection head pressure limit was 
calculated for each grid cell. Injection heads were calculated for each well in the cell including the 
additional heads from neighbouring injection wells 250 m away. The total computed head increase 
values for each cell were set to zero where the overburden head limit was exceeded. 

5.2.8 Cost estimation framework for conceptual MAR sites 

This study employs a framework for water balance and financial assessment adapted from 
Gonzalez et al. (2024), that outputs cost distributions and performs sensitivity analyses. It focuses 
on levelised cost, considering capital and operating expenses for economic sustainability and full-
cost recovery following international pricing principles. The 50-year project horizon aligns with 
similar water infrastructure assessments (OECD, 2020). Monetary values are reported in inflation-
adjusted Australian dollars as present values. A social discount factor range of 3-7% is applied. A 
global sensitivity analysis, using the SALib package in Python 3 (Herman and Usher, 2017), 
evaluates variable impacts on water recovery costs through 10,000 Latin hypercube sampling 
iterations. First order Sobol sensitivity indices are calculated using the Delta-moment 
independence measure (Borgonovo, 2007). 

The scheme conceptualisation was based on MAR potential mapping that identified areas within 
which an area of recharge was assumed giving an upper limit to local storage capacity. Recharge 
rates were parameterised from gridded input data, e.g. vertical soil hydraulic conductivity. The 
design capacity was based on reaching the local storage capacity within five years of recharge. It 
was assumed a practical duration for annual recharge would occur over 90-120 days in a recharge 
year which was used to calculate the infrastructure requirements needed to reach the storage 
capacity. Storage efficiency, or recovery efficiency (i.e. the proportion of water able to be 
recovered at suitable quality for intended application) was determined based on end use water 
quality requirements and groundwater salinity and considered hydraulic connectivity with other 
aquifers or the surface. The distance and elevation difference between the water source (e.g. river 
channel) and point of recharge was calculated from the mapped area and DEM.  

An analysis of surface hydrology and water market data was conducted to determine operating 
rules (when to recharge and recover) (BOM, 2024a) and opportunity costs of water (based on 
allocation trade prices) (BOM, 2024b) for each site. This analyses water allocation trade prices and 
river flow data filtering out zero-dollar trades and calculating median monthly and annual prices 
for a specific water system. River flow and allocation price data are converted to annual time 
series and flow exceedance probabilities are calculated. Statistical tests compare water prices 
during low and high flow periods based on exceedance probabilities, using Monte Carlo 
simulations to generate price distributions and tests for normality and significance. The allocation 
price distributions (e.g. interquartile range) for high and low flows at given exceedance 
probabilities are used as bounds for opportunity costs of water in the cost estimation model. 
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5.3 Results 

5.3.1 Unconfined MAR potential 

The storage volume estimates for unconfined aquifers within the Murray-Darling Basin varied 
significantly across groundwater resource units and confidence intervals (Figure 19). At a 75% 
screening confidence interval, more than 9500 GL of storage potential over the resource units 
assessed was identified with about 60% (6500 GL) of this capacity located within 5 km of major 
rivers (Table 4). The estimates made at resource unit scale are indicative of the empty pore space 
in aquifers due to long-term drawdown that underlie areas that have favourable characteristics for 
infiltration. However, it is not realistic to assume that this capacity would be fully realisable 
through managed aquifer recharge as the capacity is spread over very large areas (>10,000 km2). 
There is potential to target areas of greater long-term decline that have locally available storage 
space. These commonly coincide with areas of higher groundwater extraction and future demand 
where additional water security offered through MAR could benefit a wider range of potential 
users. 

The estimates of MAR potential made in this study differ from a previous regional scale 
assessment of potential storage in unconfined aquifers in the MDB but are within a factor of 2 in 
comparison (Gonzalez et al., 2020). The figures are not directly comparable as different regions 
were used to summarise results (river regions instead of groundwater resource units) and some 
areas were not included due to data paucity. However, at MDB scale 2000-4000 GL was previously 
identified within 5 km of major rivers (depending on salinity constraint) compared to about 6500 
GL within the resource units assessed in this study. The differences can be attributed to the use of 
different data sources to indicate infiltration potential, mainly from using gridded vertical 
hydraulic conductivity estimates rather than clay content grids as a proxy for soil permeability, the 
use of spatially variable gridded specific yield (porosity) values rather than a uniform assumption 
of 10%, and the use of interpolated groundwater level trends to estimate storage heights as a 
function of long-term groundwater level decline rather an uniform, nominal recharge height of 0.1 
m. The estimates presented in this study are more precise than earlier estimates, are based on 
improved datasets, and capture uncertainty in screening criteria and spatial interpolation error.  

There are significant differences in potential infiltration volumes compared with a recent study 
across NSW groundwater management areas (Gonzalez and Page, 2024). This is mainly due to the 
different input data related to predicting soil permeability, and the use of groundwater level 
trends to estimate available recharge heights as opposed to assuming recharge to a set height 
below ground level. The most influential factor was the difference between using recently 
produced estimates of soil vertical hydraulic conductivity based on the ROSETTA pedological 
transfer function (PTF) (Crosbie et al., 2025) instead of gridded estimates of clay content and the 
associated empirical relationship with conductivity from limited data (Alakayleh et al., 2018) used 
in other studies (Gonzalez et al., 2020; Gonzalez and Page, 2024; Page et al., 2021). The ROSETTA 
PTF is a neural network approach to determine soil hydraulic properties and offers hierarchical 
functions that accommodate different levels of data availability (Schaap et al., 2001; Stumpp et al., 
2009). The function used here relied on six parameters: sand, silt and clay fractions, soil bulk 
density, and drained upper and lower limit volumetric water contents from gridded national 
datasets (Crosbie et al., 2025; Grundy et al., 2015). More details on its implementation in the MDB 
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are provided by Crosbie et al. (2025). Using these data, much greater areas where acceptable 
infiltration rates are identified compared to eliminating areas where clay content is above a 
threshold of around 40%. If this clay content threshold is also applied, the total potential storage 
volume reduces from 9500 GL to about 2000 GL at the 75% screening confidence interval. This is 
comparable to the total estimate of 2200 GL for the 14 highest potential NSW Groundwater 
Sources within the MDB made previously (Gonzalez and Page, 2024). The six parameter ROSETTA 
model is observed to yield high accuracy, particularly in sandy soils but in high clay soils, errors are 
larger (Stumpp et al., 2009). This reinforces the need for field validation and site-specific 
investigations to verify the feasibility of MAR in areas identified from regional scale maps. 

 
Figure 19 Potential storage volumes in unconfined aquifer areas at 25%, 50% and 75% screening confidence levels 
across the main alluvial resource units in the Murray-Darling Basin. 

Over 75% (7500 GL) of the total potential volumes estimated were identified within four resource 
units: the Upper Lachlan, Lower Lachlan, Lower Namoi and Goulburn-Murray Sedimentary Plain 
(Table 4 and Figure 20). On average, about 60% of this potential capacity (4600 GL), was located 
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within 5 km of major rivers (Figure 21). The proportional difference between estimates made at 
25% and 75% confidence intervals reflected screening assessment robustness. The Lower Lachlan 
and Goulburn-Murray Sedimentary Plain showed the lowest values (0.43 and 0.29, respectively) 
indicating higher sensitivities to screening criteria bounds and less reliable data. In contrast, the 
Upper Lachlan and Lower Namoi had high values (0.82 and 0.80, respectively) indicating 
robustness to variations in screening criteria thresholds and more reliable data. These differences 
are visualised in the stacked bar chart showing the potential capacities at 25, 50 and 75% 
confidence intervals for the resource units assessed (Figure 20). 

The Lower Namoi, Goulburn-Murray: Sedimentary Plain and Mid-Murrumbidgee had the highest 
average recharge heights of the resource units with high storage potential, suggesting a greater 
potential for water to infiltrate and recharge the aquifer at MAR site scales (Table 4). In contrast, 
the Upper Lachlan, despite having the highest estimated potential storage volumes at 75% 
confidence interval, had a lower average recharge height (0.27 m) meaning that the potential 
capacity is distributed across wide areas. This is evident in the map that shows the Upper Lachlan 
generally had <5 ML/ha available across a large part of the resource unit (Figure 19). Conversely, 
the Lower Namoi, Goulburn-Murray and other areas where higher volumes are concentrated in 
certain areas offer potential to target smaller areas that could accept greater recharge rates 
(Figure 19). 

Table 4 Summary of storage potential at different screening confidence intervals (CI) in the unconfined aquifers of 
the main alluvial resource units in the Murray-Darling Basin. 

Resource unit 

Potential 
storage 

volume at 
25% CI (GL) 

Potential 
storage 

volume at 
50% CI (GL) 

Potential 
storage 

volume at 
75% CI 

(GL) 

Average 
potential 
recharge 
height at 

75% CI (m) 

Screening 
criteria 

robustness 

Percent volume 
at 75% CI within 5 

km of major 
rivers 

Average 
water 

level 
decline 

(m) 

Upper Lachlan 
Alluvium (GS44) 3360 3260 2745 0.27 0.82 58 3.37 

Lower Lachlan 
Alluvium (GS25) 4300 3390 1828.9 0.40 0.43 69 2.12 

Lower Namoi 
Alluvium (GS29) 2090 2090 1677.4 0.61 0.80 46 2.82 

Goulburn-Murray: 
Sedimentary Plain 
(GS8c) 

4490 2660 1286.3 0.57 0.29 77 3.84 

Upper Condamine 
Alluvium (Central 
Condamine 
Alluvium) (GS64a) 

940 750 671.7 0.37 0.72 66 2.81 

Mid–Murrumbidgee 
Alluvium (GS31) 700 680 604.9 0.52 0.86 91 2.58 

Lower Murray 
Shallow Alluvium 
(GS27a) 

1170 690 399.5 0.47 0.34 62 -1.48 

Upper Namoi 
Alluvium (GS47) 510 480 361.6. 0.20 0.70 74 2.51 

Lower 
Murrumbidgee 
Shallow Alluvium 
(GS28a) 

610 370 126.1 0.54 0.21 52 -2.24 
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Resource unit 

Potential 
storage 

volume at 
25% CI (GL) 

Potential 
storage 

volume at 
50% CI (GL) 

Potential 
storage 

volume at 
75% CI 

(GL) 

Average 
potential 
recharge 
height at 

75% CI (m) 

Screening 
criteria 

robustness 

Percent volume 
at 75% CI within 5 

km of major 
rivers 

Average 
water 

level 
decline 

(m) 

Upper Condamine 
Alluvium 
(Tributaries) 
(GS64b) 

180 140 105.1 0.16 0.60 82 1.32 

Lower Gwydir 
Alluvium (GS24) 390 370 93.8 0.29 0.24 77 0.02 

Lower Macquarie 
Alluvium (GS26) 130 40 23.1 0.28 0.18 100 2.67 

NSW Border Rivers 
Tributary Alluvium 
(GS33) 

30 20 13.7 0.11 0.51 100 2.04 

Upper Macquarie 
Alluvium (GS45) 30 20 9.8 0.18 0.35 100 0.99 

Upper Murray 
Alluvium (GS46) 120 20 5.8 0.32 0.05 100 2.32 

Queensland Border 
Rivers Alluvium 
(GS54) 

30 30 5.4 0.07 0.16 100.00 0.47 

Goulburn-Murray: 
Shepparton 
Irrigation Region 
(GS8a) 

10 10 5 0.15 0.57 84.00 3.01 

NSW Border Rivers 
Alluvium (GS32) 20 20 3.6 0.05 0.15 100.00 1.05 

Upper Namoi 
Tributary Alluvium 
(GS48) 

0 0 0 - 0.00 - 1.99 

Upper Gwydir 
Alluvium (GS43) 20 10 0 - 0.00 - 1.73 

 

The upstream and tributary alluvial resource units generally had lower volume estimates 
compared to the first four resource units. The Upper Condamine Alluvium (Central Condamine 
Alluvium) (GS64a) has the highest volume among these units but were significantly lower than the 
volumes of the first four units. No potential storage was identified at the 75% confidence interval 
for the Upper Namoi Tributary Alluvium (GS48) or the Upper Gwydir Alluvium (GS43). These 
results are due to the limited lateral extent of aquifers in narrow river valleys that are generally 
thinner, comprised of finer sediments with higher bulk densities and lower porosities, and 
generally have shallow groundwater. Consequently, these units had much lower average recharge 
heights compared to the first four units. Where potential was identified, a higher percentage of 
their volume was within 5 km of corresponding rivers e.g. Upper Condamine Alluvium (Tributaries) 
(82%). 
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Figure 20 Potential storage volume estimates for unconfined areas of resource units made at 25%, 50% and 75% 
screening confidence intervals. 

 

Figure 21 Potential storage volume estimates for unconfined areas of resource units within 5 km of major rivers at 
25%, 50% and 75% screening confidence intervals. 

The sensitivity analysis revealed that the depth to groundwater trend was the most sensitive 
spatial screening criterion across almost all resource units, with many values at 1.0 (Table 5). 
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Salinity also showed high sensitivity in several regions, particularly in the Lower Lachlan, Lower 
Namoi, Goulburn-Murray and Lower Murray Shallow Alluvium. Both the DTW and salinity criteria 
were assessed using a static upper threshold limit (>0 m/y and < 3000 mg/L respectively) as the 
spatial uncertainty was captured in the standard error surfaces calculated as part of the spatial 
interpolation. The soil vertical hydraulic conductivity (Ks) parameter exhibits high sensitivity in the 
Upper Lachlan Alluvium and Mid-Murrumbidgee Alluvium, while regolith is most sensitive in the 
Mid-Murrumbidgee Alluvium (Table 5). Slope was insensitive across all areas due to the low 
topographic relief across the resource unit areas. No suitable areas were identified in the Upper 
Namoi Tributary and Upper Gwydir resource units at the 75% confidence interval. These insights 
highlight the critical factors affecting the suitable areas in different resource units informing the 
reasons for differences in screening confidence and assessment robustness. The results indicate 
where investigations could be targeted to reduce uncertainty in site specific studies during entry-
level MAR feasibility assessments (NRMMC-EPHC-NHMRC, 2009). 

Table 5 Unconfined spatial screening criteria sensitivities to areas identified at 75% confidence interval. 

Resource unit Soil K Slope Regolith 
Depth to 

water Salinity 
Upper Lachlan Alluvium (GS44) 1.0 0.0 0.3 0.2 0.2 
Lower Lachlan Alluvium (GS25) 0.0 0.0 0.0 1.0 0.3 
Lower Namoi Alluvium (GS29) 0.0 0.0 0.0 1.0 0.0 
Goulburn-Murray: Sedimentary Plain (GS8c) 0.0 0.0 0.0 0.0 1.0 
Upper Namoi Alluvium (GS47) 0.3 0.0 0.1 1.0 0.2 
Upper Condamine Alluvium (GS64a) 0.0 0.0 0.0 0.1 1.0 
Mid–Murrumbidgee Alluvium (GS31) 0.9 0.1 1.0 0.1 0.0 
Lower Murray Shallow Alluvium (GS27a) 0.1 0.0 0.0 0.7 1.0 
Upper Condamine Alluvium (Tributaries) (GS64b) 0.1 0.0 0.3 0.2 1.0 
Lower Gwydir Alluvium (GS24) 0.0 0.0 0.0 1.0 0.0 
Lower Murrumbidgee Shallow Alluvium (GS28a) 0.0 0.0 0.0 1.0 0.1 
NSW Border Rivers Tributary Alluvium (GS33) 0.0 0.0 0.1 0.9 1.0 
Lower Macquarie Alluvium (GS26) 0.2 0.0 0.0 0.5 1.0 
Queensland Border Rivers Alluvium (GS54) 0.0 0.0 0.0 1.0 0.0 
NSW Border Rivers Alluvium (GS32) 0.0 0.0 0.1 1.0 0.3 
Upper Macquarie Alluvium (GS45) 0.0 0.0 0.0 1.0 0.2 
Goulburn-Murray: Shepparton Irrigation Region (GS8a) 0.0 0.0 0.1 0.0 1.0 
Upper Murray Alluvium (GS46) 0.0 0.0 0.0 0.2 1.0 
Upper Namoi Tributary Alluvium (GS48)           
Upper Gwydir Alluvium (GS43)           
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5.3.2 Confined MAR potential 

Table 6 presents potential storage volumes and characteristics for the alluvial resource units with 
confined aquifers. Across all units, around 9700 GL of potential storage was identified, about half 
of which (4700 GL) was located within 5 km of major rivers which could be used to source water 
for recharge. However, as with the unconfined aquifer potential, storage capacity is spread over a 
very large area (>20,000 km2) so it is unrealistic to assume it could be fully utilised. The spatial 
distributions of confined storage potential at different screening confidence intervals are shown in 
Figure 22. The assessment showed that most of the storage potential is located within distinct 
regions of 5-6 resource units (Figure 22). The Lower Namoi Alluvium (GS29) shows significant 
potential storage volumes (>3300 GL) across confidence intervals (CIs) and a robust screening 
criteria score of 0.76. The Lower Murrumbidgee Deep Alluvium (GS28b) had the second highest 
potential storage volume at 75% CI (3280 GL) but a lower robustness score (0.13).  

The Lower Gwydir Alluvium (GS24) and Lower Lachlan Alluvium (GS25) also exhibit notable 
potential storage volumes and recharge rates. The Mid-Murrumbidgee Alluvium (GS31) stands out 
with consistent potential storage volume and high proximity to major rivers (95.15%). Other units 
like the Goulburn-Murray Sedimentary Plain (GS8c) and Lower Murray Deep Alluvium (GS27b) 
have lower potential storage volumes. Several units, including the Queensland Border Rivers 
Alluvium (GS54) and Upper Lachlan Alluvium (GS44), show no potential storage. Long-term 
average water level declines vary, with the highest observed in the Lower Murray Deep Alluvium 
(GS27b) at 9.6 m. However, due to high salinity and low hydraulic conductivity, this resource unit 
did not show significant injection potential. 

There are significant differences in estimates of potential injection volumes compared with a 
recent study across NSW groundwater source areas (Gonzalez and Page, 2024). Estimated volumes 
for resource units in the current study are larger those made for equivalent groundwater sources, 
in some cases (e.g. Lower Namoi) by an order of magnitude. This is mainly due to the different 
assumptions made for constraining injection pressure. In this study, the constraint was based on 
not exceeding 1.5 times overburden pressure for a given recharge rate following Australian 
guideline recommendations (NRMMC-EPHC-NHMRC, 2009). Median heads at the edge of cells 
(250 m from any of the 4 injection wells in each 1 km2 cell) were around 3 m. In contrast, the 
former study assumed an injection pressure limit of <1 m head increase at the edge of each cell to 
avoid potential impacts to neighbouring bores. This comparison highlights that if aquifer 
properties (e.g. transmissivity, storativity) are generally favourable in an area, the main 
determinant of injection potential is the allowable pressure increase for managing risks to 
neighbouring assets and the aquifer/aquitard integrity. Ultimately, site specific investigations are 
needed to determine the actual hydraulic capacity of a confined aquifer location to determine the 
acceptable radius of influence and select injection pressures to manage these risks.  
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Figure 22 Potential to achieve injection target in confined aquifer areas at 25%, 50% and 75% screening confidence 
levels across the main alluvial resource units in the Murray-Darling Basin. 

The screening robustness, indicating the proportional difference between estimates at 25% and 
75% confidence intervals, varied across resource units. These variances are depicted in stacked bar 
charts of volumes in Figure 23 and Figure 24. The Lower Namoi Alluvium (GS29) and Lower Gwydir 
Alluvium (GS24) showed high robustness (0.76 and 0.68, respectively), while the Lower 
Murrumbidgee Deep Alluvium (GS28b) and Lower Lachlan Alluvium (GS25) had lower robustness 
(0.13). The Mid-Murrumbidgee Alluvium (GS31) demonstrated perfect robustness (1.0) meaning 
that the assessment was insensitive to the groundwater salinity and head criteria due to the low 
salinities observed and low interpolation errors of salinity and hydraulic heads. The percentage of 
volumes within 5 km of major rivers is highest for the Mid-Murrumbidgee Alluvium (95.15%) and 
Lower Gwydir Alluvium (90.53%). 
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Table 6 Summary of storage potential at different screening confidence intervals (CI) in the confined aquifers of the 
main alluvial resource units in the Murray-Darling Basin. 

Resource unit 

Potential storage 
volume at 25% CI 

(GL) 

Potential storage 
volume at 50% CI 

(GL) 

Potential storage 
volume at 75% CI 

(GL) 

Screening 
criteria 

robustness 

Percent volume at 75% 
CI within 5 km of major 

rivers 

Lower Namoi 
Alluvium (GS29) 4398 4010 3330 0.76 42.14 

Lower 
Murrumbidgee 
Deep Alluvium 
(GS28b) 

24548 12770 3280 0.13 25.63 

Lower Gwydir 
Alluvium (GS24) 2236 2070 1530 0.68 90.53 

Lower Lachlan 
Alluvium (GS25) 9543 4980 1260 0.13 58.33 

Mid–Murrumbidgee 
Alluvium (GS31) 330 330 330 1 95.15 

Goulburn-Murray: 
Sedimentary Plain 
(GS8c) 

23 13 10 0.43 90 

Queensland Border 
Rivers Alluvium 
(GS54) 

0 - - - - 

Upper Lachlan 
Alluvium (GS44) 0 - -  - 

Lower Murray Deep 
Alluvium (GS27b) 1300 354 0 - - 

Upper Macquarie 
Alluvium (GS45) 0 - - - - 

Lower Macquarie 
Alluvium (GS26) 18 14 0 - - 

Upper Namoi 
Alluvium (GS47) 0 - - - - 

Upper Murray 
Alluvium (GS46) 0 - - - - 

NSW Border Rivers 
Alluvium (GS32) 0 - - - - 
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Figure 23 Potential storage volume estimates for resource units with confined aquifers at 25%, 50% and 75% 
screening confidence intervals. 

 

Figure 24 Potential storage volume estimates for resource units with confined aquifers within 5 km of major rivers 
at 25%, 50% and 75% screening confidence intervals. 
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The five hydrogeological factors (effective saturated thickness, hydraulic conductivity, 
transmissivity, salinity, and head decline) significantly influenced the estimated storage volumes 
for different resource units (Table 7). Aquifer thickness (and effective thickness) directly impacts 
aquifer storativity and transmissivity, with thicker zones offering more potential.  

Table 7 Summary of confined aquifer potential storage and spatially averaged hydrogeological criteria. 

Resource unit 

Potential 
storage 
volume at 
75% CI (GL) 

Feasible 
area at 
75% CI 
(km2) 

Effective 
saturated 
thickness (m) 

Hydraulic 
conductivi
ty (m/d) 

Transmiss
ivity 
(m2/d) 

Salinity 
(µS/cm) 

Head 
decline (m) 

Lower Namoi 
Alluvium (GS29) 

3334 4872 28 20 289 2910 3.3 

Lower 
Murrumbidgee 
Deep Alluvium 
(GS28b) 

3281 3588 89 31 1651 7110 7.1 

Lower Gwydir 
Alluvium (GS24) 

1531 1646 34 46 797 3243 3.7 

Lower Lachlan 
Alluvium (GS25) 

1260 5702 21 29 386 3598 2.7 

Mid–Murrumbidgee 
Alluvium (GS31) 

330 1445 6 36 102 2350 4.0 

Goulburn-Murray: 
Sedimentary Plain 
(GS8c) 

10 5746 32 5 87 12042 5.6 

Queensland Border 
Rivers Alluvium 
(GS54) 

0 0 13 6 35  5.0 

Upper Lachlan 
Alluvium (GS44) 

0 9139 1 14 6 4260 6.2 

Lower Murray Deep 
Alluvium (GS27b) 

0 3660 28 3 46 11780 9.6 

Upper Macquarie 
Alluvium (GS45) 

0 50 3 11 21 3209 2.0 

Lower Macquarie 
Alluvium (GS26) 

0 0 7 10 35 4652 7.0 

Upper Namoi 
Alluvium (GS47) 

0 2895 1 9 4 2408 5.3 

Upper Murray 
Alluvium (GS46) 

0 254 7 5 16 3564 2.0 

NSW Border Rivers 
Alluvium (GS32) 

0 0 7 5 12  1.9 
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Hydraulic conductivity and transmissivity are key to recharge efficiency with higher values 
enabling greater injection at lower pressure head. For example, the Lower Murrumbidgee Deep 
Alluvium, with high average transmissivity and hydraulic conductivity, shows a substantial storage 
volume of 3281 GL, reflecting its capacity for recharge across large areas (>3000 km2) (Table 7). 
However, in other resource units with large feasible areas, such as the Upper Lachlan Alluvium 
(>9000 km²), storage potential was limited due to much lower average hydraulic conductivity, 
transmissivity and thickness, restricting injection potential despite the vast area. Salinity levels also 
played a role in limiting volume potential, as higher salinity may reduce recovered water quality 
making MAR less viable, e.g. Goulburn-Murray Sedimentary Plain where average salinity was 
>12,000 µS/cm (Table 8). All resource units showed areas of long-term groundwater head decline 
that are reflected in the spatially averaged values. Although this did not influence injection 
potential (this was limited by pressure head responses for a given recharge rate), declining heads 
suggest the current extraction rates in some regions are above historical recharge rates. These 
factors combine to influence how effectively each area can receive additional recharge and 
efficiently store water for long-term use. 

 

5.3.3 Lower Namoi MAR site conceptualisation and cost estimate 

An infiltration basin site was conceptualised for the Lower Namoi area as shown in Figure 25. This 
would target the upper, unconfined aquifer of the Narrabri Formation (NSW Government, 2018). 
The area of interest is within an area of high screening confidence (>75%) and recharge potential 
(16-18 ML/ha). The potential recharge area is assumed to be within the 2 km2 extent shown in 
Figure 25. The total aquifer capacity within this zone is 32,000-36,000 ML requiring 6400-7200 
ML/y of recharge over five years to reach capacity (disregarding any aquifer losses). Infiltration 
rates, based on vertical soil K estimates are 0.15-0.17 m/d. With 90-120 days per year to recharge, 
8-10 basins of 6.25 ha each would be required to reach the recharge rate of 6400-7200 ML/y. The 
site is 4-5 km from the Namoi River with a pump lift of 9-11 m required.  

Median allocation trade prices in the Namoi River system (SS21) over the period of record from 
2008 to 2024 were significantly higher ($195/ML) during low flows (measured near Wee Waa, 
station 419059) at a flow exceedance probability >60% (Mann-Whitney p <0.0001) compared to 
high flows ($112/ML). MAR would target the higher part of the hydrograph where the opportunity 
cost of water was assumed to range between the 25th and 75th percentile of trade prices ($75-
150/ML). Flow rates stochastically varying between 129,000-194,000 ML/y, corresponding to the 
60% exceedance probability rate ±20% across the 50-year annual time series (1976-2024), were 
used to trigger recharge and recovery. Annual storage efficiency was assumed in the range of 0.8-
0.9, to account for potential hydraulic losses through seepage into the underlying, semi-confined 
Gunnedah Formation should these volumes not be recognised in the lower aquifer. Groundwater 
quality in the region is fresh and unlikely to be limiting fresh water recovery through mixing with 
groundwater (NSW Government, 2018). 
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Figure 25 Lower Namoi conceptual infiltration basin site. 

Across all simulations, the total cumulative volume recharged over the life of the scheme was 
between 200-250 GL (but never exceeding 36 GL in aquifer storage at one time), and the total 
cumulative volume recovered was between 87-104 GL. This was due to annual storage losses of 
10-20% of the stored volume (annual recovery efficiency of 80-90%). Median present values and 
levelised costs of recharged and recovered water for the conceptual Lower Namoi MAR site are 
given in Figure 26 and the full range of disaggregated cost estimates are given in Table 8.  
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Figure 26 Present values and levelised costs for the Lower Namoi conceptual MAR site. 

 

Table 8 Summary of disaggregated cost estimates for the Lower Namoi conceptual MAR site. 
 

Median Min Max 

Capacity ML/y 6800 6400 7199 

Recovery Efficiency 0.85 0.8 0.9 

Infiltration rate m/d 0.16 0.15 0.17 

Total capex AUD  $            4,920,135   $         3,623,034   $            6,585,171  

Total opex AUD  $         13,214,132   $         6,808,416   $         25,214,922  

Basin construction AUD  $            3,074,791   $         2,148,843   $            4,375,162  

Pumps & pipes AUD  $            1,518,173   $             911,889   $            2,224,246  

Observation bores AUD  $                171,150   $             120,000   $                209,650  

Feasibility studies AUD  $                366,500   $             239,017   $                493,977  

Maintenance AUD  $            2,360,442   $         1,314,572   $            4,334,774  

Pumping cost AUD  $                600,008   $             293,859   $            1,207,902  

Opportunity cost water AUD  $            9,399,886   $         4,376,597   $         19,001,636  

Monitoring AUD  $                840,280   $             464,236   $            1,573,374  

Annual opex AUD  $                269,676   $             138,947   $                514,590  

LC recharge AUD/m3  $                        0.09   $                      0.06   $                        0.14  

LC recovery AUD/m3  $                        0.21   $                      0.12   $                        0.38  

Total volume recharged ML 200520 167438 251965 

Total volume recovered ML 86783 70016 103904 
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The total median estimated cost of the project over the 50-year horizon is around $18 million. 
Total median capital costs including basin construction, pumps and pipes, observation bore drilling 
and feasibility studies are about $5 million. Total median operating costs are about $13 million and 
around $250k annually. Median levelised cost (LC) of recharge is $0.09/m3 and LC of recovery is 
$0.21/m3 ranging around $0.12-0.30/m3 (Figure 26). These estimates are within the range 
expected based on costings of similar infiltration sites (Gonzalez et al., 2024; Ross, 2022; Ross and 
Hasnain, 2018).  Based on indicative hydro-economic modelling, LC of recovery for a well injection 
scheme of similar capacity (e.g. >4 GL/y) could be expected to range between $0.30-$0.80/m3 
depending on storage efficiency and recharge rate (Gonzalez et al., 2024). These costs are 
generally lower than alternative water supply options, e.g. recycled water for supplementing 
reservoirs and groundwater costs around $2.00/m³, while stormwater harvesting ranges from 
$0.60–2.50/m³ (WSAA, 2020). Desalination has higher costs, with capital costs between $665–
3900/m³ and operating costs of $0.52–0.88/m³ (Pearson et al., 2021). Dam storage costs across 98 
sites ranged from $0.43–2.21/m³, with a median of $1.07/m³, while costs accounting for 
evaporation ranged from $0.72–2.78/m³ (Petheram and McMahon, 2019). 

Analysis of disaggregated capital and operating costs revealed that LC of recovery were driven by 
opportunity costs of water (50%, total around $9 million over 50 years) followed by basin 
construction ($3 million) and maintenance (around $2 million) (Figure 27). For MAR in the Lower 
Namoi, the opportunity cost of water is not necessarily the actual cost of obtaining volumes for 
recharge through purchase of temporary allocations. Instead, it is assumed that water sourced for 
MAR has an associated opportunity cost due to the scarcity of the resource (Gonzalez et al., 2024). 
Annual recharge volumes of up to 7200 ML as modelled here would rely on the availability of 
source water which for context, is about 3% of the 241,000 ML of available water in the Lower 
Namoi regulated river water source in 2024-25 (NSW Government, 2024c). Recharge volumes of 
6800-7200 ML/y comprised up to 5% of flows at the lower end of the flow rates triggered for 
recharge. 

Cost estimates for this conceptual scheme are based on coarse data and assumptions and should 
be considered as indicative. Local investigations would be required to refine the hydrogeological 
characterisation, hydrologically model recharge, storage and recovery, and conceptualise the 
scheme in more detail to more accurately and precisely estimate technical feasibility and 
economic viability as part of a staged, risk-based assessment process (NRMMC-EPHC-NHMRC, 
2009). 
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Figure 27 Disaggregated capital and operating costs for the Lower Namoi conceptual MAR site as a proportion of 
levelised cost of recovery. 

In water market environments, understanding market dynamics is crucial for developing operating 
rules and reducing uncertainty in the economic viability of MAR. Factors such as water availability, 
climate patterns, weather forecasts, commodity price fluctuations, and demand patterns influence 
market behaviour (Grafton et al., 2011; Seidl et al., 2020). This knowledge helps inform 
operational rules and plans for optimal recharge and recovery timing, ensuring cost efficiency and 
benefits. In systems like Australia’s Murray-Darling Basin, operators must decide on strategies for 
sourcing, storing, and distributing water through MAR. Options include using held entitlements 
and allocations, buying additional permanent water rights and trading temporary rights, relying on 
temporary trades at market spot prices, or using futures market strategies (Gonzalez et al., 2024). 

A global sensitivity analysis revealed the most sensitive parameter affecting the variability in LC of 
recovery was the social discount rate followed by the opportunity cost of water, the flow rate used 
to trigger recharge and recovery, and the recovery (or storage) efficiency (Figure 28). This 
assessment used a social discount rate range of 3-7%. Using a lower range of social discount rates 
in projects with long horizons benefits is justified by the need to account for intergenerational 
equity and the long-term impacts (Harrison, 2010). Lower discount rates give more weight to 
future costs and benefits. This approach is particularly relevant for projects related to 
environmental sustainability, infrastructure, and climate change mitigation, where benefits accrue 
over extended periods. Lower discount rates can better reflect the ethical considerations of 
intergenerational equity and the long-term nature of certain public investments. The commonly 
adopted 7% discount rate may no longer be appropriate given current economic conditions and 
the growing disparity between generations (Turan and Gurluk, 2023). 

The opportunity cost of water was highly sensitive as it formed a large proportion of LC of 
recovery (about 50%) and this variable interacted with the discount rate range tested as future 
costs were subject to adjustment according to the net-preset-value function (Figure 28). The flow 

https://www.pc.gov.au/research/supporting/cost-benefit-discount
https://www.pc.gov.au/research/supporting/cost-benefit-discount
https://www.pc.gov.au/research/supporting/cost-benefit-discount
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rate trigger for recharge and recovery that was determined from the relationship between flows 
and allocation prices was also sensitive. Advice and agreement on the most appropriate discount 
rate to assume in the context of the project which may be set out in specific funding application 
requirements, would reduce uncertainty in the assessment. Narrowing the range of opportunity 
costs of water, and related to this, the operational rules for which part of the hydrograph to target 
for optimal performance, would also be effective in reducing uncertainty. Finally, improving the 
understanding of the recovery or storage efficiency of the system, both from a technical and 
regulatory perspective, would further reduce cost estimation variance.  

An infiltration-based MAR scheme of the scale conceptualised here could be structured to deliver 
multiple benefits to users and the environment due to the diversity of agricultural land uses, 
presence of regional population centres, and groundwater dependent ecosystems in the southern 
part of the region. The Lower Namoi resource unit area includes 6,100 km² of dryland agriculture, 
1,100 km² of irrigation, and 0.8 km² of horticulture (ABARES, 2024b). In the 2020-21 Australian 
Agricultural Census for the Narrabri LGA, the key commodities were wheat ($169M), cotton 
($147M), and chickpeas ($39M). Cotton, chickpeas, and canola had the highest gross values per 
hectare ($7,743, $1,370, and $1,306, respectively) (ABARES, 2024a). 

 

Figure 28 First order global sensitivities of variables used for estimating levelised cost of recovery for the Lower 
Namoi conceptual MAR site. 

 

The case for increasing water security in the Lower Namoi region is well supported. Between 
2017-2020, the region experienced severe drought conditions, with general security licence 
allocations reduced to zero for two consecutive years and high security allocations cut to 75% 
during a Stage 4 Critical drought (NSW DPIE, 2021). Groundwater extraction exceeded the long-
term average annual extraction limit (LTAAEL) of 92.6 GL for three consecutive years (2017-2020), 
with the maximum annual extraction during 2016-2023 reaching 124% of the LTAAEL, highlighting 
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a strong reliance on groundwater during dry periods (NSW Government, 2024b). Groundwater 
levels in the Lower Namoi have declined at an average rate of 0.19 meters per year from 1971-
2021 (Fu et al., 2022). Despite some recovery post-Millennium Drought (Fu et al., 2023), 
groundwater resilience and sustainability issues in the region were ranked among the highest in 
the alluvial aquifer of the Murray-Darling Basin (Rojas et al., 2023a). 

Possible frameworks for implementation of MAR in the Basin context have been proposed that 
encompass four main objectives (Page et al., 2022):  

1. Supplement existing entitlement holders’ supply 

2. Improve productive capacity, water quality or environmental outcomes 

3. Support individual or collective use or trade 

4. Actively enable conjunctive use of surface and groundwater 

The choice of frameworks depends on the desired outcomes, objectives, and context. These 
frameworks are not mutually exclusive and can be combined to improve outcomes for both users 
and the environment. They serve as tools for guiding discussions among resource managers and 
stakeholders on suitable arrangements. A key next step is to test these frameworks within various 
state policies and regulations to assess any necessary adjustments for their implementation. For 
example, using MAR to mitigate the risks of general security surface water allocation reductions 
and carry-over restrictions during dry periods or the use of supplementary water entitlements for 
recharge during high flow events (Merritt et al., 2021).  

Given the level of consumptive use in the Lower Namoi region and the gross value of agricultural 
production with associated socio-economic implications, MAR that supports individual or 
collective use or trade of water banked in the aquifer is logical. Outcomes could also include a 
level of improvement to the resource condition and environmental outcomes e.g. reducing 
demand for surface water during low-flow periods and improving outcomes for associated GDEs. 
In the context of the frameworks above this would be a combination of 2 and 3. 

In the Lower Namoi case, the scheme could use surface water during periods of water availability 
or low cost to recharge groundwater that is stored in a designated consumptive pool. On a small 
scale, individual irrigators or service providers could recharge groundwater on behalf of local 
beneficiaries, such as farmers, at a cost for future extraction or trade. The system could be scaled 
up to allow the banked water to be sold to other users, with the aquifer serving as a delivery 
mechanism for extraction at different locations. Because recharge volumes are tied to a specific 
consumptive pool, users would receive a secure, tradeable entitlement for the stored water. This 
model could attract private investment but could also be part of a public scheme. Economic 
benefits may include the development of markets for recharge entitlements and infrastructure 
investment. Cost recovery could involve tradeable water allocations to cover recharge, storage, 
and delivery costs. A percentage of banked water could also be reserved for environmental 
purposes by attributing to a non-consumptive water at local or resource scale. Regulatory 
conditions, ideally based on aquifer hydraulic properties, would determine the number of licenced 
extraction points that could access banked volumes and participate in a multi-user scheme. If 
restricted to the immediate zone of recharge, the number of potential users would be limited to 
the dozen or so groundwater licences in the area totalling around 15 GL/y (Merritt et al., 2021). 
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6 Summary and conclusions 

6.1 Groundwater use 

Groundwater in the Murray-Darling Basin is distributed across different types of aquifers including 
unconsolidated sedimentary plain and alluvial aquifers, tertiary limestone aquifers and aquifers in 
shallow and deep formations of the Great Artesian Basin. Out of these, the alluvial aquifers are the 
most developed for groundwater use for irrigation and other purposes. Recent groundwater 
reporting (2012-2019) shows that close to 75% of groundwater use in the MDB is concentrated in 
eight alluvial aquifer systems that are managed as 22 different resource units. This study 
implemented a consistent methodology to develop improved understanding of the status and 
trends of groundwater resources at the basin scale focusing on these 22 resource units to help 
better inform groundwater management.  

Analysis of recent groundwater extraction data for the period 2012-2019, when there is high 
confidence in metered data, reveals that surface water and groundwater use have a 
complementary relationship across the Basin. Groundwater use varied between 8% and 18% of 
total water use from 2012 to 2019 and was found to be inversely proportional to surface water 
availability. That is, groundwater use increased when surface water availability and use decreased. 
This pattern of groundwater could be caused by several reasons. Often a short-term increase in 
groundwater use is caused by increased groundwater irrigation to offset lower seasonal rainfall 
(Doble et al., 2023; Walker, 2023). Such increases in groundwater use have been observed during 
the 2012-2019 period. When surface water and groundwater allocations are available, surface 
water sources are generally preferred for economic reasons. This complementary pattern of 
existing water use between surface water and groundwater sources in the Basin is favourable for 
management solutions like managed aquifer recharge.  

6.2 Groundwater level trends and causal analysis 

We conducted a robust analysis of groundwater level trends in the alluvial aquifers using observed 
groundwater level data from 910 observation bores during the last 50-year period, between 1971 
and 2021. Trends were analysed for minimum, mean and maximum DTW. Trend analysis showed 
statistically significant increasing DTW at an average rate of 0.11 m/y across the alluvial aquifer 
systems during this period and a range of 0.03 m/y to 0.19 m/y. Spatial and temporal patterns in 
groundwater level trends were investigated using two clustering analysis techniques. The analysis 
identified six distinct clusters for trends in groundwater level data across the 910 bores. These 
clusters differed in the way groundwater levels behaved before during and after the Millennium 
Drought (between 1997 and 2009). About 50% of bores belonged to one cluster that showed 
consistent and continuous increasing DTW. The second biggest cluster, with 26% of bores, showed 
stable groundwater levels before 1996 and then a decreasing trend in groundwater levels during 
and after the Millennium Drought period. 

We used a machine learning model to investigate causal influence of climatic and other covariates 
like rainfall, evapotranspiration, flood events and groundwater extraction on observed 
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groundwater level trends. A single ML model based on feed-forward neural networks was trained 
and validated using this data set to predict average monthly groundwater levels within each 
resource unit.  The model was able to satisfactorily predict both seasonal and long-term trends in 
groundwater levels.  

Explainable AI techniques were used together with the trained and validated ML model to 
investigate the sensitivity of groundwater level predictions to different covariates. The analyses 
provide interesting insights into causal relationships between groundwater levels and relevant 
covariates and how these relationships evolved over time. This approach was used for causal 
attribution analysis of 14 resource units over a period of 32 years between 1988 and 2020. 
Limitation in data availability for some important covariates was overcome by using ‘proxy’ data. 
For example, number of groundwater extraction bores drilled over the years was used as proxy 
data for representing change in groundwater extractions over the years.  

The sensitivity analysis using explainable AI techniques informed that groundwater development 
(the number of bores) was the most important overall factor influencing groundwater level 
predictions. The analyses could be significantly improved using groundwater extraction data, 
which unfortunately is not readily available across the MDB and for long periods. Although the 
number of groundwater bores here is monotonically increasing, actual extractions would rise and 
fall year to year depending on climate and surface water availability. Spatial and temporal 
characteristics of groundwater level changes across multiple resource units were represented in 
the ML model using the name of the resource unit and year. These features also consistently came 
across as sensitive factors influencing model predictions. Practically the former factor (resource 
unit names) represents the variability in hydrogeological characteristics across different aquifer 
units in the Basin. Future modelling efforts could unpack these further by including relevant 
biophysical variables in the ML modelling. 

Flood extent was also identified as an important factor that influences groundwater level 
predictions. In fact, bore hydrograph response was more sensitive to flood extent than rainfall. 
This is indicative of groundwater levels responding much more to flood events in the basin than to 
rainfall events. Direct recharge from rainfall is a relatively smaller component of recharge for 
alluvial aquifers. This result highlights the importance of localised groundwater recharge during 
flood events and its role in ‘bouncing back’ groundwater storage after major flood events. This 
effect of groundwater storage responding to 2011-12 flood events can be observed for most 
clusters (Figure 6).  

The sensitivity of groundwater levels to flood events also highlights the opportunity of using high 
flow events for managed aquifer recharge using schemes like riverbank infiltration, especially 
where groundwater storage potential exists near flood plains. 

6.3 Managed Aquifer Recharge 

Potential aquifer storage volumes for unconfined systems in the Murray-Darling Basin varied 
significantly across groundwater resource units and confidence intervals. At a 75% confidence 
interval, about 6500 GL of storage potential was identified within 5 km of major rivers. However, 
this capacity was spread over large areas, making it unrealistic to fully realize this potential 
through managed aquifer recharge (MAR). Targeting areas with greater long-term decline and 
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locally available storage space could efficiently enhance water security. The Lower Namoi, 
Goulburn-Murray, and Mid-Murrumbidgee had the highest average potential recharge heights, 
suggesting greater potential for MAR at site scales. The sensitivity analysis showed that depth to 
groundwater was the most sensitive criterion, followed by salinity. 

Approximately 9700 GL of potential storage was identified across confined resource units, with 
4700 GL near major rivers for recharge. However, the storage was spread over a large area, 
limiting full utilization. The Lower Namoi Alluvium showed the highest potential storage (3300 GL) 
with high robustness, followed by the Lower Murrumbidgee Deep Alluvium (3280 GL) but with 
lower robustness. The Mid-Murrumbidgee Alluvium had a highly robust estimate (330 GL) mostly 
within 5 km of rivers. Hydrogeological factors, such as aquifer thickness, conductivity, 
transmissivity, and salinity, influenced injection and storage potential. Assessment of MAR 
feasibility was conducted at Basin scale and results should be considered indicative of regional 
potential. Local scale investigations are required to validate potential and assess site viability 
according to Australian risk-based guidelines for MAR project evaluation including technical and 
socio-economic factors.    

An infiltration basin site was conceptualized for the Lower Namoi area, targeting the upper, 
unconfined aquifer of the Narrabri Formation. The area had high screening confidence and 
recharge potential, with a total aquifer capacity locally of 32,000-36,000 ML. To achieve this, 8-10 
basins of 6.25 ha each would be required. The project’s median cost over 50 years was estimated 
at $18 million, with capital costs of $5 million and operating costs of $13 million. The median 
levelised cost of recovered water was 0.09/m3 (ranging $0.12-30/m3). Costs compare favourably 
against alternative options e.g. recycled water, stormwater harvesting, desalination and unit costs 
of dam storage. The most sensitive parameter affecting the variability in the levelised cost (LC) of 
recovery was the social discount rate, followed by the opportunity cost of water, operational rules 
based on river flow rates and trade prices, and aquifer storage efficiency. Reducing uncertainty in 
the assessment could be achieved by conducting investigations to narrow the range of these 
variables. 

6.4 Limitations and knowledge gaps 

We highlight the basin-scale nature of the study and its intent to provide an understanding of 
trends and other characteristics across the basin. The study focussed on groundwater level trends, 
resilience and sustainability characteristics of alluvial aquifers across the MDB considering 
resource unit as the basic spatial unit for the analyses. Thus, while the trend, resilience, stress and 
sustainability characteristics reported in this study reflect average characteristics across the 
resource unit, it can obscure significant local variations. Interpretation of the results for individual 
resource units and smaller areas need to consider and account for this. Aquifer water 
management by states and regulatory agencies often consider management responses that are 
localized, considering unique aquifer characteristics and the specific risk factors present in 
different subregions. Effective water management at such local scale requires the identification of 
local risk receptors and specific trigger thresholds. Interpretation of the results presented in this 
study in the context of local management of groundwater resource units is not warranted. 
Aquifers within the Murray-Darling Basin exhibit substantial variability in terms of hydrological 
properties, recharge rates, and connectivity with surface water resource. The regional scale of 
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analysis in this study may overlook these localized features, leading to potential gaps in 
understanding critical local stressors and sustainability triggers. Assessments at resource unit level 
may not provide sufficient granularity to inform local management decisions, which can result in 
generalized strategies that fail to address specific needs. Nevertheless, analysis at the aggregated 
level provides a useful indication of the broad trends and characteristics in groundwater. 

We focused on analysing groundwater levels, usage, and related data from the past 50 years. The 
estimates of system characteristics such as resilience, stress, and sustainability are most applicable 
to this historical period. Due to the potential impacts of climate change on water demand and 
availability, the findings may not fully apply to future conditions but can be extrapolated to 
provide some indication. The trend analysis relied on annually aggregated observation data to 
include sufficient data to summarise long-term patterns at the resource unit level. Exploration of 
intra-annual trends, including correlation with seasonal climate and extraction patterns, requires 
different data quality criteria.   

Predictive analyses for plausible climate change and water resource development scenarios would 
require comprehensive modelling studies. Similarly, detailed evaluation of conjunctive surface 
water-groundwater management and adaptation measures would necessitate developing 
scenarios informed by biophysical and socioeconomic factors and supported by detailed 
modelling. The simple ML model developed for sensitivity and causal attribution analysis in this 
study was a point-scale, spatially averaged model for resource units and considered causal factors 
for which data was readily available. Groundwater use data was available for a relatively shorter 
period (2006 onwards) for most SDL resource units in our analysis. Regulatory changes 
implemented through water sharing plans can affect groundwater use and lead to changes in 
groundwater levels. Such causal relationships would be better articulated in data-driven models 
when longer term groundwater use data becomes available.  

A broad range of factors could have causal relationships with groundwater level changes. For 
example, changes in surface water – groundwater interactions caused by changes in the flow 
regime could have a direct influence on river recharge and groundwater levels in many areas. 
More detailed investigations considering spatial and temporal variabilities are required to infer 
causal relationships in these areas. The inferences reported in this study are drawn based on 
statistical correlations and covariances among variables representing climatic and other processes. 
The model’s sensitivity analysis regarding factors such as rainfall and flood recharge is limited by 
the spatial and temporal scale of the training and validation data and the limited availability of 
groundwater extraction data. Detailed analyses of processes like recharge and its spatial-temporal 
variations would require physics-based numerical models. 

The assessment of MAR potential in this study was a desktop exercise, providing a basin-scale 
overview of storage potential and MAR probabilities across groundwater resource units. The 
development of MAR schemes in specific areas requires detailed, local investigations using a risk-
based approach. This begins with entry-level viability assessments and progresses to field 
investigations, water quality and residual risk assessments before moving to pilot projects and full-
scale implementation and need to consider a range of technical and socioeconomic factors. Soil 
and hydrogeological parameters affecting actual recharge rates, storativity and storage efficiency 
and recoverability are the most critical factors for assessing MAR scheme performance from a 
technical perspective. This is evidenced in the sensitivity of results to input data and assumptions 
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when comparing this study with other assessments of MAR potential. This study did not assess 
policy or regulatory conditions required for accommodating MAR in resource planning. Potential 
frameworks for implementation proposed in the literature are discussed and illustrated with a 
case study of a conceptual site in this study but it is recognised that there are gaps in current 
policy frameworks that need to be addressed for MAR to become part of the standard water 
management tools for practitioners to implement. 

Future studies should incorporate sub-resource unit or aquifer-specific analyses to better capture 
local variations and facilitate the development of targeted management response using risk-based 
approaches. Evaluation of stress, resilience and sustainability for future scenarios of climate 
change warrants studies to develop improved understanding of groundwater demand 
corresponding to such scenarios and risk-based modelling approaches to undertake predictive 
assessments. Studies should also focus on identifying the data needs and monitoring network 
investments targeting hotspots of resilience and sustainability issues. Research should focus on 
adaptive management frameworks that can progressively and iteratively improve groundwater 
management.  

 

6.5 Conclusions 

Groundwater has historically been a relatively small component of overall water use in the 
Murray-Darling Basin. Increased groundwater use is observed in the basin in periods of reduced 
surface water availability. This pattern of use, combined with significant potential for enhanced 
groundwater storage through managed aquifer recharge, enables potential development of 
conjunctive surface water and groundwater management strategies for combating impacts of 
climate change on water security in the basin.  

The study conducted in-depth analyses of groundwater level trends and the resilience, stress and 
sustainability of the alluvial aquifers. Findings from the study showed that prioritisation of aquifer 
management must be underpinned by a comprehensive understanding of observed trends, 
aquifer storage, rate of depletion and replenishment, stress levels and ecosystem functions of the 
aquifer.  

The study also revealed the potential of novel data-driven and machine learning based approaches 
to develop simple models and gain insights about aquifer responses to climatic and other drivers. 
The ML-based models in general provide new approaches for modelling groundwater systems 
using different types of conventional and unconventional data types. Improved models and better 
insights could be achieved in future with investments in better data collection. Explainable AI 
methods have significant potential to help make inferences about complex process interactions 
(e.g. flood recharge) based on statistical relationships between relevant measured variables.  

Potential aquifer storage volumes in the Murray-Darling Basin vary significantly across different 
groundwater resource units. In unconfined aquifers, approximately 6500 GL of storage potential 
was identified within 5 km of major rivers, though the large area covered makes full utilization 
through managed aquifer recharge (MAR) unrealistic. Focused targeting of areas with greater 
long-term decline and locally available storage could enhance water security, with the Lower 
Namoi, Goulburn-Murray, and Mid-Murrumbidgee showing the highest recharge potential. In 
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confined aquifers, about 4700 GL of storage potential was identified within 5 km of rivers, but 
again, the extensive area (>20,000 km²) limits full MAR utilization. The Lower Namoi Alluvium had 
the highest storage potential (3300 GL) with high robustness, while the Lower Murrumbidgee 
Alluvium had a similar volume (3280 GL) but lower robustness. Groundwater levels, salinity aquifer 
thickness and hydraulic conductivity were sensitive variables that affected recharge and storage 
potential. 

An infiltration basin site was conceptualized for the Lower Namoi area, targeting the upper, 
unconfined aquifer of the Narrabri Formation, with a local capacity of 32,000-36,000 ML. To 
achieve this, 8-10 basins of 6.25 ha each would be required. The project’s median cost over 50 
years is $18 million, with capital costs of $5 million and operating costs of $13 million. The median 
levelised cost of recovered water is $0.09/m³. Costs compare favourably against alternative water 
supply options. The social discount rate is the most sensitive parameter affecting cost variability, 
followed by the opportunity cost of water and operational rules. In this scenario, surface water 
could be used during periods of availability or low cost to recharge groundwater with volumes 
stored in a separate consumptive pool. Individual irrigators or service providers could recharge 
groundwater for local beneficiaries at a cost for future extraction or trade. The system could scale 
up, allowing banked water to be sold to other users, with the aquifer serving as a delivery 
mechanism. Users would receive a secure, tradeable entitlement for stored water. This model 
could attract private investment or be part of a public scheme, with economic benefits including 
markets for recharge entitlements and infrastructure investment. 
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Appendix 

Table A.1 Metered groundwater annual actual take reported in (MDBA, 2020b). BDL: Baseline Diversion Limit and 
SDL: Sustainable Diversion Limit as defined in Schedule 4 of the Basin Plan. 

Code Resource unit 

Baseline 
Diversion 

Limit 
(GL/y) 

Sustainable 
Diversion 

Limit 
(GL/y) 

Actual annual take (GL/y) 

2012
-13 

2013
-14 

2014
-15 

2015
-16 

2016
-17 

2017
-18 

2018
-19 Max Min Avg 

GS64a  
Upper Condamine 
Alluvium (Central 
Condamine Alluvium)  

81.4 46.0 32.3 55.1 41.1 42.0 48.0 50.5 57.7 57.7 32.3 46.7 

GS64b  Upper Condamine 
Alluvium (Tributaries)  45.5 40.5 33.9 32.9 30.6 32.6 32.8 33.7 35.6 35.6 30.6 33.2 

GS54 Queensland Border 
Rivers Alluvium 14.0 14.0 8.85 11.3 11.8 12.8 10.8 14.0 14.4 14.4 8.85 12.0 

GS32 NSW Border Rivers 
Alluvium 8.40 8.40 2.84 5.59 5.41 3.98 3.38 6.37 8.98 8.98 2.84 5.22 

GS33 NSW Border Rivers 
Tributary Alluvium 0.41 0.41 0.16 0.17 0.17 0.17 0.17 0.17 0.16 0.17 0.16 0.17 

GS27a  Lower Murray 
Shallow Alluvium  81.9 81.9 2.26 4.10 5.90 5.40 5.97 8.39 11.9 11.9 2.26 6.27 

GS27b  Lower Murray Deep 
Alluvium  88.9 88.9 56.2 45.2 67.5 85.5 36.7 78.9 110.

7 
110.

7 36.7 68.7 

GS46  Upper Murray 
Alluvium  14.1 14.1 12.3 10.7 9.87 11.2 8.66 14.0 17.8 17.8 8.66 12.1 

GS28a  Lower Murrumbidgee 
Shallow Alluvium  26.9 26.9 5.25 6.47 7.15 6.21 6.47 8.17 8.32 8.32 5.25 6.86 

GS28b  Lower Murrumbidgee 
Deep Alluvium  273.6 273.6 179.

6 
230.

3 
300.

3 
268.

5 
151.

5 
323.

1 
377.

9 
377.

9 
151.

5 261.6 

GS31  Mid-Murrumbidgee 
Alluvium  53.5 53.5 35.5 36.1 40.1 32.4 30.3 42.7 55.6 55.6 30.3 39.0 

GS25  Lower Lachlan 
Alluvium  123.4 117.0 87.2 104.

9 
120.

5 97.5 91.4 127.
2 

131.
8 

131.
8 87.2 108.6 

GS44  Upper Lachlan 
Alluvium  94.2 94.2 44.2 42.3 57.2 55.7 37.9 75.4 89.4 89.4 37.9 57.4 

GS26  Lower Macquarie 
Alluvium 70.7 70.7 26.9 29.7 32.0 35.2 18.6 40.8 47.4 47.4 18.6 32.9 

GS45  Upper Macquarie 
Alluvium  17.9 17.9 13.7 14.1 15.3 15.9 13.5 21.0 23.0 23.0 13.5 16.6 

GS29  Lower Namoi 
Alluvium  88.3 88.3 61.1 104.

3 
105.

1 93.0 51.2 95.3 116.
2 

116.
2 51.2 89.5 

GS47  Upper Namoi 
Alluvium  123.4 123.4 90.1 113.

6 
102.

4 93.7 70.1 105.
7 

112.
2 

113.
6 70.1 98.3 

GS48  Upper Namoi 
Tributary Alluvium  1.77 1.77 0.55 0.38 0.21 0.23 0.18 0.28 0.19 0.55 0.18 0.29 

GS24  Lower Gwydir 
Alluvium  33.0 33.0 29.3 46.4 43.3 35.5 23.8 35.5 37.5 46.4 23.8 35.9 

GS43  Upper Gwydir 
Alluvium  0.72 0.72 0.07 0.07 0.07 0.07 0.12 0.07 0.07 0.12 0.07 0.08 

GS8a  
Goulburn-Murray: 
Shepparton Irrigation 
Region  

244.1 244.1 41.3 35.5 43.7 79.5 54.2 43.4 96.3 96.3 35.5 56.3 

GS8c  Goulburn-Murray: 
Sedimentary Plain  203.5 223.0 101.

2 98.4 136.
5 

141.
5 

138.
9 

120.
9 

149.
1 

149.
1 98.4 126.6 
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Table A.2 Groundwater resource units and corresponding unconfined and confined aquifer systems (MDBA, 2020a; 
NSW Government, 2024a). 

State Code Resource unit Unconfined aquifer system Confined aquifer system 

VIC GS8a Goulburn-Murray: Shepparton 
Irrigation Region (GS8a) Shepparton Formation 0-25 m  

VIC GS8c Goulburn-Murray: Sedimentary 
Plain (GS8c) Shepparton Formation 0-25 m 

Calivil Formation 25-80 
m, Renmark Group 70-
250 m 

NSW GS24 Lower Gwydir Alluvium (GS24) Narrabri Formation 0-30 m Gunnedah Formation 30-
90 m 

NSW GS25 Lower Lachlan Alluvium (GS25) Shepparton, Calivil Formation 
0-70 m 

Renmark Formation 50-
400 m 

NSW GS26 Lower Macquarie Alluvium 
(GS26) Shallow alluvium 0-60 m Deep alluvium 60-120 m 

NSW GS27a Lower Murray Shallow Alluvium 
(GS27a) Shepparton Formation 0-70 m  

NSW GS27b Lower Murray Deep Alluvium 
(GS27b)  Calivil Formation & 

Renmark Group 70-350 m 

NSW GS28a Lower Murrumbidgee Shallow 
Alluvium (GS28a) Shepparton Formation 0-40 m  

NSW GS28b Lower Murrumbidgee Deep 
Alluvium (GS28b)  Calivil Formation & 

Renmark Group 40-400 m 

NSW GS29 Lower Namoi Alluvium (GS29) Narrabri Formation 0-40 m Gunnedah Formation 40-
120 m 

NSW GS31 Mid–Murrumbidgee Alluvium 
(GS31) Cowra Formation 0-40 m Lachlan Formation 40-90 

m 

NSW GS32 NSW Border Rivers Alluvium 
(GS32) Shallow alluvium 0-30 m Deep alluvium 30-170 m 

NSW GS33 NSW Border Rivers Tributary 
Alluvium (GS33) Shallow alluvium 0-40 m  

NSW GS43 Upper Gwydir Alluvium (GS43) Shallow alluvium 0-30 m  

NSW GS44 Upper Lachlan Alluvium (GS44) Cowra Formation 0-60 m Lachlan Formation 60-150 
m 

NSW GS45 Upper Macquarie Alluvium 
(GS45) Shallow alluvium 0-25 m Deep alluvium 25-60 m 

NSW GS46 Upper Murray Alluvium (GS46) Shepparton Formation 0-40 m Lachlan Formation 40-100 
m 

NSW GS47 Upper Namoi Alluvium (GS47) Narrabri Formation 0-40 m Gunnedah Formation 40-
170 m 

NSW GS48 Upper Namoi Tributary 
Alluvium (GS48) Shallow alluvium 0-20 m  

QLD GS54 Queensland Border Rivers 
Alluvium (GS54) Shallow alluvium 0-30 m Deep alluvium 30-100 m 

QLD GS64a 
Upper Condamine Alluvium 
(Central Condamine Alluvium) 
(GS64a) 

Shallow alluvium 0-140 m  

QLD GS64b Upper Condamine Alluvium 
(Tributaries) (GS64b) Shallow alluvium 0-140 m  
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Table A.3 Spatial screening criteria and rationale for assessment of MAR potential in unconfined aquifer conditions. 

Criterion Method Threshold range Rationale 
Aquifer 
presence 

Lateral extent of resource 
units with unconfined aquifers 
(MDBA, 2020b) 

 

Presence/absence Resource units are management 
boundaries that follow regional 
hydrogeology but can comprise multiple 
aquifers ( 
Table ) 

Slope Percent rise calculated from 9 
second DEM (Hutchinson et 
al., 2008) 

<5% - <10% Slope is a predictor of permeability; high 
slope produces higher runoff 

Regolith 
thickness 

Median estimates of regolith 
thickness (Wilford, 2015) 

>8 m - > 12 m Represents the thickness of 
unconsolidated material above bedrock, 
used as proxy for alluvial aquifer 
thickness, thin aquifers have limited 
additional storage potential, minimum of 
10 m is assumed ± 20% 

Soil vertical 
hydraulic 
conductivity  
(Ks) 

Depth weighted harmonic 
mean of estimated Ks from 
pedological transfer function 
on gridded soil properties 
(Crosbie et al., 2025; Grundy 
et al., 2015) 

>0.08 - >0.11 m/d Assumes a minimum recharge volume of 
1 GL across 10 ha over 90-120 days of 
recharge 

Groundwater 
salinity 

Interpolated 75th percentile 
bore salinities for each 
resource unit (BOM, 2023) 

<3000 mg/L High groundwater salinity limits recovery 
efficiency (Clark et al., 2015); upper limit 
of <3000 mg/L for irrigation of a range of 
moderately to highly salt tolerant crops 
(ANZECC-ARMCANZ, 2000), interpolation 
standard error represents uncertainty 

Groundwater 
level decline 

Long term level trend 
magnitudes interpolated for 
each unconfined resource unit 
(BOM, 2023) 

>0 m/y Infiltration up to the height of long-term 
level decline, interpolation standard error 
represents uncertainty 

Table A.4 Spatial screening criteria and rationale for assessment of MAR potential in confined aquifer conditions. 

Criterion Method Threshold range Rationale 
Aquifer presence Lateral extent of resource 

units with confined aquifers 
(MDBA, 2020b) 

 

Presence/absence Resource units are management 
boundaries that follow regional 
hydrogeology but can comprise multiple 
aquifers 

Groundwater 
salinity 

Interpolated 75th percentile 
bore salinities for each 
resource unit (BOM, 2023) 

<3000 mg/L High groundwater salinity limits 
recovery efficiency (Clark et al., 2015); 
upper limit of <3000 mg/L for irrigation 
of a range of moderately to highly salt 
tolerant crops (ANZECC-ARMCANZ, 
2000), interpolation standard error 
represents uncertainty 

Groundwater 
level decline 

Long term groundwater level 
trend magnitudes 
interpolated for each 
resource unit (BOM, 2023) 

>5 m/y MAR targeting areas of significant long-
term head declines, interpolation 
standard error represents uncertainty 
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Table A.5 Summary of groundwater level trend magnitudes (m/y) for aquifers across the main alluvial systems of 
the MDB (1971-2021). 

Aquifer system n bores Min (m/y) Mean (m/y) Max (m/y) 

Border Rivers Alluvium (unconfined) 53 -0.116 0.011 0.190 

Condamine Alluvium (unconfined) 431 -0.271 0.055 0.273 

Cowra Formation (unconfined) 43 -0.005 0.066 0.212 

Macquarie Alluvium (unconfined) 22 -0.233 0.028 0.218 

Narrabri Formation (unconfined) 86 -0.133 0.059 0.270 

Shepparton Formation (unconfined) 2868 -0.276 0.045 0.273 

Border Rivers Alluvium (confined) 32 -0.056 0.087 0.420 

Calivil, Renmark formations (confined) 899 -0.076 0.122 0.458 

Gunnedah Formation (confined) 714 -0.074 0.128 0.473 

Lachlan Formation (confined) 270 -0.067 0.107 0.432 

Macquarie Alluvium (confined) 84 -0.075 0.089 0.412 

 
Table A.6 Summary of 75th percentile bore salinities for aquifers across the main alluvial systems of the MDB 
(BOM, 2023). 

Aquifer system n bores Min µS/cm Mean µS/cm Max µS/cm 
Border Rivers Alluvium (unconfined) 12 312 3479 17640 
Condamine Alluvium (unconfined) 188 413 3333 24750 
Cowra Formation (unconfined) 77 164 7710 47753 
Macquarie Alluvium (unconfined) 16 166 6462 42975 
Narrabri Formation (unconfined) 117 148 7474 49727 
Shepparton Formation (unconfined) 23043 140 7218 51200 
Border Rivers Alluvium (confined) 13 503 1479 5091 
Calivil, Renmark formations (confined) 1616 140 7894 50600 
Gunnedah Formation (confined) 97 230 9311 50900 
Lachlan Formation (confined) 61 282 8392 50650 
Macquarie Alluvium (confined) 30 170 7501 42350 

 

Causal analysis including measured extraction data (shorter-term analysis) 

This section is a continuation of Section 3.3 (Results of Causal Attribution Analysis) presenting a 
shorter- term model (2007-2021) at six resource units only (where extraction data is available). 
Here, observed extraction volumes are used in place of the ‘number of bores’ variable. The results 
are shown in Figure A.1. Although the model is able to simulate regular seasonal dynamics, many 
peaks and troughs are missed. Long-term trends are not evident due to the short timeline. 
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Figure A.1 Groundwater level predictions (blue) from model using measured extractions as a predictor. This model 
covers six resource units from 2007-2021. 

The ranking of feature importance in this model is shown in Table A.7. In the longer-term model, 
the temporal variable of Year was much more important than in the shorter-term model, 
indicating that long-term trends are better identified. Strong geographical differences were again 
evident through the strength of the resource unit variable. The current month’s precipitation and 
extraction data were not found to be important to the model – indicating a possible mismatch 
between data aggregations, or lags in the response of groundwater levels. 

Table A.7 Input variables ranked by importance for the two models (top five listed).  

Shorter-term model Longer-term model 
Resource unit 
Flood extent % 
Extractions – 12-month sum 
Season 
Rain – 12-month sum 

Number of bores 
Resource unit 
Year 
Flood extent % 
Rain – 12-month sum 

 

Figure A.2 Partial dependence plots for model including measured groundwater extractions. 

On the partial dependence plots for the shorter-term model, an interesting relationship was found 
between the annual measured extractions and the groundwater predictions, as shown on Figure 
A.2. The impact of annual extractions on groundwater levels differed greatly amongst 
observations, with the crossing blue lines indicating the presence of interactions. These erratic 
blue lines for the extraction variable indicate that extractions affect groundwater levels differently 
at every bore and time. Plotting the SHAP values over time for this variable on Figure A.3, it is 
evident that the influence of groundwater extractions on groundwater levels varies substantially in 
this model by resource unit, season and year. Yet on the right panel of Figure A.3, the impact of 
extractions appears independent of the volume of extractions. 
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Figure A.3 SHAP values - impact of annual extractions on groundwater level predictions in model (2007-2021). The 
impact differs by resource unit, season and year. Impact is not dependent on the volume extracted (right panel). 
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