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Foreword 

This report presents a comprehensive summary of the research, datasets, and the 
floodplain inundation model developed for Research Question 7 (RQ7) – "Enhancing 
floodplain inundation and volume prediction to support environmental watering and water 
resource planning" a key component of the Murray-Darling Water and Research Program 
(MD-WERP). Over the three-year project duration, significant progress has been made in 
improving the prediction and understanding of floodplain inundation dynamics within the 
Murray-Darling Basin. 

The report is structured into four main sections: 

1. Review and Input Data Preparation: This section provides a review of existing 
literature, methodologies, and the extensive data preparation that underpins the 
model, datasets and relative research. 

2. Research: Here, we delve into the core research activities, including the 
development of methods and approaches designed to enhance surface water 
detection from remote sensing imagery and a water depth estimation model that is 
essential for inundation volume predictions. 

3. Datasets: This section outlines the datasets developed and utilized throughout the 
project, which serve as critical resources for modelling, validating floodplain 
responses, and investigating climate change impact on flooding. 

4. RQ7 Model: Finally, the report details the RQ7 inundation model, a tool that 
synthesizes the research findings and data, aiming to offer more accurate 
predictions of floodplain water volume and spatial inundation patterns. 

We hope that this report serves as a valuable resource for future research efforts in 
floodplain hydrology and contributes to more effective water management strategies within 
the Murray-Darling Basin.  
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Executive summary 

The Research Question 7 (RQ7) project aims to build on the foundational models and 
capacities developed through previous research, advancing floodplain inundation 
modelling to support systematic management and scenario planning across the Murray–
Darling Basin. This research, part of the Murray–Darling Water and Environment Research 
Program (MD-WERP), seeks to develop a model capable of performing multiple runs over 
large areas and extended simulation periods, providing robust predictions of flood 
inundation extent, depth, duration, and floodplain volume. The model is intended to 
support long-term, data-driven environmental and water resource planning, particularly 
under varying climate scenarios and management strategies. 

Over the course of this project, we began with an extensive review and input data 
preparation phase, laying a robust foundation for the modelling work by examining existing 
literature and methodologies, and gathering comprehensive data on floodplain hydrology, 
topography, and climate. This initial phase enabled a detailed understanding of the critical 
elements needed for improved floodplain inundation modelling.  

Our research activities focused on developing innovative methods to enhance the 
accuracy and coverage of floodplain inundation extent, depth, and volume predictions, 
tailored to the unique characteristics of the Murray–Darling Basin. Specifically, we 
developed advanced techniques for detecting surface water from remote sensing imagery 
and benchmarked water depth estimation models, critical for precise inundation volume 
calculations. These advancements support both dataset production and modelling 
development, forming a crucial basis for future applications. 

We have created high-resolution datasets that include maps of inundation extents, water 
depth, persistent water presence, and the maximum number of consecutive dry years 
across the basin. These datasets are instrumental for quantifying flood characteristics and 
assessing the impacts of climate change on flooding patterns within the Murray–Darling 
Basin. 

The core output of the project, the RQ7 Model, integrates these research findings and 
datasets into a predictive tool designed to provide reliable estimates of floodplain water 
volumes and spatial inundation patterns. The RQ7 Model offers a valuable resource for 
stakeholders such as the Murray–Darling Basin Authority (MDBA), Basin States, the 
Commonwealth Environmental Water Office (CEWO), and hydrological and environmental 
researchers. These users can leverage the model’s capabilities to make informed 
decisions that balance ecological needs with resource availability under changing climate 
conditions, supporting resilient environmental water management and scenario planning 
across the basin.  

In summary, the RQ7 project presents a significant advancement in floodplain modelling, 
with the RQ7 model providing a practical tool for current and future floodplain management 
across the basin. The knowledge, data, and tools developed in this project contribute to a 
more resilient approach to environmental water management and floodplain adaptation, 
helping safeguard the ecological and community well-being of the Murray–Darling Basin. 
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1 Introduction 

Flood inundation models are essential tools for supporting decision-making in 
environmental watering and water resource planning. Since the 1970s, systematic 
research efforts have significantly advanced model capabilities, resulting in various models 
with different complexities, data requirements, and computational demands, each suited to 
specific applications. Hydrodynamic models, in particular, are frequently employed to 
inform water resource management due to their detailed simulations. However, even with 
improvements in computational power, these models' high computational cost and data 
requirements limit their feasibility for large-scale, systematic management and scenario 
planning, which often requires extensive spatial coverage and multiple model runs. 

The RQ7 research seeks to build on past modelling capacities to develop a model 
specifically designed for systematic management applications. This proposed model is a 
hybrid approach, combining aspects of the River Murray Floodplain Inundation Model 
(RiM-FIM) (Overton et al., 2006; Penton and Overton, 2007) and Teng-Vaze-Dutta 
(TVD)(Teng et al., 2018, 2015a) models: it creates a comprehensive database from 
remote sensing imagery, as RiM-FIM does, while incorporating a daily floodplain water 
extent and depth simulation based on hydrograph, similar to the TVD model. The RQ7 
model aims to improve predictions of flood inundation extent, depth, duration, and 
floodplain volumes, making it a practical tool for large-scale planning and environmental 
management. 

In the first year of the project, we reviewed widely used flood inundation models and key 
prior modelling efforts within the Murray–Darling Basin. We also collected, developed, and 
synthesized multiple datasets crucial for developing, constraining, and validating flood 
inundation models. These datasets include digital elevation models (DEMs), hydrodynamic 
model outputs, river stage heights, flow hydrographs and climate data. Throughout the 
project, we continuously refined these datasets, publishing them on the CSIRO data 
access portal whenever possible, except for those restricted by license agreements. These 
efforts have established a strong foundation for creating a reliable, large-scale flood 
inundation model tailored to the unique needs of the Murray–Darling Basin. 
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2 Commonly used flood inundation models 

In the last century we have witnessed rapid advancement in the way we undertake flood 
inundation modelling. Two categories of approaches have attracted the most attention in 
the research community, with a third type gaining popularity in recent years. The two most 
commonly used approaches are empirical methods and hydrodynamic models, and the 
third type is conceptual models. 

Table 1 compares the three approaches described above. They all have their own 
strengths and limitations and are suitable for different applications. In summary, the 
empirical method is most suitable for flood monitoring and post disaster assessment; the 
hydrodynamic models effectively simulate impact of dam break, flooding caused by 
tsunami, and riverbank erosion studies; and the conceptual models are most suitable for 
probabilistic flood risk assessment, multi-scenario modelling, and water resources 
management on large floodplains. 
Table 1 Comparative summary of the relative merits and weaknesses of different modelling 
approaches  

METHOD STRENGTHS LIMITATIONS SUITABILITY 

Empirical models Relatively quick and 
easy to implement  
Based on observation 
Derived inundation 
estimate is independent 
Technology is rapidly 
improving 

Non-predictive 
No/indirect linkage to hydrology 
(difficult to use in scenario modelling) 
Coarse spatial and temporal resolution 
(although improving) 
Engineering limitations (sensors, 
carriers, transmission devices) 
Environmental impacts (clouds, wind, 
damaging weather conditions, other 
natural constrains) 
Processing errors (algorithm, artificial 
errors…) 

Flood monitoring 
Flood damage assessment 
Serve as observations to 
support calibration, validation 
and data assimilation for 
other methods 

Hydrodynamic 
models 

Direct linkage to 
hydrology 
Detailed flood risk 
mapping 
Can account for 
hydraulic 
features/structures  
Quantifies timing and 
duration of inundation 
with high accuracy 

High data requirements 
Computationally intensive 
Input errors can propagate in time 

Flood risk assessment 
Flood damage assessment   
Real-time flood forecasting  
Flood related engineering   
Water resources planning 
River bank erosion  
Floodplain sediment 
transport 
Contaminant transport  
Floodplain ecology  
River system hydrology  
Catchment hydrology 

Conceptual 
models 

Computationally 
efficient 

No inertia terms (not suitable for rapid 
varying flow) 
No/little flow dynamics representation 

Flood risk assessment 
Water resources planning 
Floodplain ecology  
River system hydrology  
Catchment hydrology 
Scenario modelling 

Source: adapted from Table 3 in (Teng et al., 2017)) 
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3 Review of previous flood studies in MDB 

The MDB extends across four States: New South Wales, Victoria, Queensland, and South 
Australia and covers an area of 1.061 million km2. It is subject to multi-year droughts and 
intense wet periods. Mean annual precipitation across the Basin varies from around 
200mm/year in the west to more than 1,500 mm/year in headwaters in the east. The basin 
has large interannual variability of precipitation and streamflow (Potter and Zhang, 2009), 
and the basin has seen statistically significant reductions in precipitation and streamflow in 
recent decades. The river system is also highly modified. River operators manage the river 
flows through a series of dams and weirs to provide water to irrigators and environmental 
assets along the length of the system. It is no surprise then, that there have been 
numerous flood studies by government agencies. 

Government agencies ranging from the Commonwealth government organisations, State 
governments, CMAs, local councils, research institutes including universities and private 
organisations such as insurers, utility companies and consulting firms have carried out 
many flood modelling activities in the Basin throughout the years for various purposes. On 
one hand, this highlights the importance of the work; on the other hand, it is difficult to 
review all the previous work in details. Below are fifteen key flood inundation modelling 
reports, according to states and agencies and reviewed by the team, to gather insights 
from previous studies conducted across different parts of the Murray–Darling Basin in 
preparation for this project. 

SA: 

• 1956 flood model (Renmark Paringa - 
https://www.waterconnect.sa.gov.au/Content/Publications/DEW/DEWNR-TR-2015-
56.pdf) 

• Riverine Recovery Weir Pool Hydraulic Modelling Hydraulic Modelling (2012) - first 
database of flows 
(https://www.waterconnect.sa.gov.au/Content/Publications/DEW/Weir%20Pool%20
Hydraulic%20Modelling_FINAL.pdf) 

• 2020 Model (DHI) - updated database from SA 

• Production of 80 000 ML/day flood inundation map for the South Australian section 
of River Murray (Montazeri & Gibbs, 2020) 

(Some of the MIKE models are described separately – e.g. for Katarapko wetlands - 
https://www.waterconnect.sa.gov.au/Content/Publications/DEW/DEWNR-TN-2016-
06.pdf ) 

NSW: 

• Barwon Darling Reach 3 - Background document to the Floodplain Management 
Plan for the Barwon-Darling Valley Floodplain 2017 
(https://www.industry.nsw.gov.au/__data/assets/pdf_file/0006/146085/Background-
document-FMP-Barwon-Darling-Valley-Floodplain-2017.pdf) 
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• Mollee - Background document to the Floodplain Management Plan for the Lower 
Namoi Valley (2020) 
(https://www.industry.nsw.gov.au/__data/assets/pdf_file/0011/321131/Background-
document-to-the-Floodplain-Management-Plan-for-the-Lower-Namoi-Valley-
Floodplain-2020.pdf) 

• Lower Gingham (report not publicly available) 

• Murrumbidgee 

• Macquarie Marshes 

CSIRO: 

• Darling system (Dutta et al., 2016) 

• Edward-Wakool system (Vaze et al., 2018a) 

• RiM-FIM (Penton et al. 2007, Sims et al., 2014)  

• MDB-FIM (Chen et al., 2011) 

MDBA: 

• Lindsay hydraulic model (Water Technology 2006) 

• Edward Wakool Model (currently under development) 

After examining the above-mentioned models and reports, five large-scale high impact 
projects that have accessible modelling results were selected (Table 2).Their spatial 
locations are shown in Figure 1. 

Table 2 Selected flood modelling projects in MDB 
LOCATION ORGANISATION PURPOSE MODEL MORE INFORMATION 

The South 
Australian 
section of 
River Murray 

SA Department for 
Environment and 
Water 

Environment
al flow 

MIKE FLOOD (Montazeri and Gibbs, 2020) 

Lower 
Balonne and 
Middle 
Darling 
System 

CSIRO  
MDBA  

Water 
management 
Environment
al flow 

MIKE 21 (Dutta et al., 2016) 

Lower 
Murrumbidg
ee River 

CSIRO 
NSW Office of 
Environment and 
Heritage 

Environment
al flow 
Flood risk 
management 

RiM-FIM 
TUFLOW 
(upstream of 
Balranald) 

(Sims et al., 2014) 
(Burke et al., 2022; Tetley, 2022; 
Wells and Streeton, 2022) 

Namoi River NSW Office of 
Environment and 
Heritage 

Healthy 
floodplains 
and general 
flood studies 
and 
investigations 

MIKE 11 
MIKE 21 Flexible 
Mesh (FM)  
MIKE FLOOD 
FM 

(NSW OEH, 2017) 

Edward-
Wakool 
System 

CSIRO  
MDBA 

Water 
management 
Environment
al flow 

RiM-FIM 
MIKE 11 
MIKE 21 

(Sims et al., 2014) 
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Figure 1 Spatial location of a number of selected flood modelling projects 

River Murray in South Australia 

Lower Balonne and Middle Darling System 

Edward-Wakool System 

Lower Murrumbidgee River 

Namoi River 
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4 Input data preparation 

High-quality data is essential for building a robust model. As a critical component of model 
development, several input datasets were compiled during the initial phase of the 
research, with continuous improvements made throughout the project. These datasets 
were fundamental to the development and validation of the RQ7 model. The datasets are 
accessible through the CSIRO Data Access Portal (https://data.csiro.au/). This section 
provides detailed descriptions of the datasets, which include the digital elevation model 
(DEM), hydrodynamic modelling results, gauged data, soil property data, and climate data.  

4.1 DEMs 

4.1.1 DEM fusion 

This section is adapted from Gallant (2019). 

Modelling of flood inundation requires accurate topographic data, which in most cases 
means a high-resolution LiDAR or photogrammetric DEM with removal of non-ground 
features like vegetation. The entire modelling domain must be represented but the area 
prone to flooding is often a small part of the entire domain, therefore it is often cost-
effective to use expensive and detailed elevation data in the focus area and cheaper, less 
detailed data elsewhere. This leads to the need for combining the two DEMs seamlessly 
so that there are no abrupt changes in height or slope at the transition. 

In the MDB, LiDAR data was collected in the floodplain area covering most part of 
floodplains along the main river channels (Figure 2) and the remaining area was covered 
by SRTM-derived DEM-H at 1 arcsecond resolution. We have adopted a method first 
developed by (Gallant, 2019) for adjusting the DEM-H to match the LiDAR data to remove 
abrupt steps at the boundary to ensure the combined data are suitable for flood modelling. 
Two main steps in the process are (1) removal of systematic vertical errors and (2) 
adjusting the less reliable DEM-H to match the LiDAR at the boundary. We have improved 
the method by fine-tuning the buffer size at the boundary of the two DEMs. The method 
successfully removed local steps and produced a satisfactory result as shown in Figure 2 
(Marvanek et al., 2022). 

https://data.csiro.au/
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Figure 2 Merging LiDAR DEM and SRTM: the original SRTM and LiDAR DEM are shown in the large 
map on the left; the top right insert shows a zoomed in view of SRTM; the middle insert shows the 
abrupt change (local steps) at the boundary of the two datasets; the bottom insert shows the merged 
data with the abrupt change removed. 

4.1.2 Latest version of DEM 

As new DEM datasets are gradually becoming available, we have set up a strategic 
project in CSIRO to investigate better methods (including methods using AI/ML) to merge 
different datasets, including SRTM, LiDAR, and Photogrammetry data. We have used the 
outcome from the strategic project to update the DEM whenever a new dataset becomes 
available.  

The Digital Elevation Model (DEM) is crucial for flood inundation modelling, as the terrain 
significantly influences water movement. While an optimal choice is a high-resolution Light 
Detection and Ranging (LiDAR) DEM, its availability is limited across the Murray-Darling 
Basin (MDB). Marvanek et al. (2022) adopted a methodology initially developed by Gallant 
(2019) to merge and gap-fill LiDAR DEM with a global DEM. This method involves 
adjusting the global DEM to align with LiDAR data, eliminating abrupt steps at the 
boundary and ensuring the combined data are suitable for flood modelling. 

 
SRTM 

SRTM 25m 

5m LiDAR 
Aggregated 
to 25m 

SRTM 

LiDAR 

SRTM 

Blended 
LiDAR 
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Based on feedback from downstream researchers and data users, we have identified the 
need for an improved DEM to enhance the precision of our floodwater depth estimates. 
Funded by CSIRO Environment, the Digital Water and Landscapes (DWL) initiative has 
generated a Basin-wide DEM using the Gallant (2019) method and latest Elvis 
(fsdf.org.au) data (up to November 2022), making it more recent and accurate. 
Collaborating with DWL and the MDBA, we are actively working to establish bathymetry 
data for channels and large lakes, intending to integrate bathymetry data seamlessly into 
the DEM.  

In the pre-processing for the MDB DEM, all the original input DEMs (as seen in different 
colours in Figure 3) were bilinearly resampled to 5 m, reprojected to the GA LCC 
projection (EPSG 7845; datum GDA2020), and adjusted to the Australian Vertical Working 
Surface vertical datum (AVWS, which is more accurate over 100s of kilometres than the 
Australian Height Datum). The “gap filling” DEM is the FABDEM (Forest and Buildings 
removed Copernicus DEM; Hawker et al. 2022), which is a global elevation map that 
removes building and tree height biases from the Copernicus GLO 30 DEM with 30 m 
resolution. 

 

https://elevation.fsdf.org.au/
https://elevation.fsdf.org.au/
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Figure 3 Input DEMs from Elvis that were merged into the new version of the basin-wide DEM. 

 

The method from Gallant (2019) was adapted to merge the DEMs. For merges involving 
two LiDAR DEMs (or original grid cell resolution of 2 m or less), two gaussian smoothing 
steps were used. For merges where the coarser of the pair of DEMs had a 5 m original 
grid cell resolution, 4 gaussian smoothing steps were used, and for merges where the 
coarser DEM had an original grid cell resolution of 10 m or more, 8 gaussian smoothing 
steps were used. More gaussian smoothing steps increased the distance over which the 
difference between the datasets was added to the coarser DEM, with 1 x the difference 
added at the edge, tapering to 0 x the difference at the gaussian-step-defined distance 
from the edge. Figure 4 illustrates the steps required to create and quality assure the new 
version of the basin-wide DEM. 

 
Figure 4 Flow chart of the processing steps for generating the new version of the basin-wide DEM. 

4.1.3 Integrating bathymetry into the DEM 

One of the known weaknesses of the MDB maximum two-monthly water depth data was 
the less accurate water depth estimation for permanent water bodies, including main river 
channels and large lakes. The main reason for these errors is the presence of water during 
the capture of DEM data. To address this issue, integrating bathymetry data into the DEM 
is necessary, to include the structure below the water surface. In collaboration with DWL, 
we identified, collated, and processed existing bathymetric datasets for the MDB from 
multiple sources and produced a consistent MDB bathymetrically enforced elevation 
dataset. 

There is no current technology that calculates the elevation of land under permanently wet 
rivers and dams due to the likely presence of suspended sediments and aquatic 
vegetation. Bathymetric LiDAR uses a green light sensor however very clear water is 
essential for consistent and accurate data collection. For permanently wet rivers, lakes and 
dams, methods such as traditional surveying and sonar acquisitions from boats are 
required. Different types of bathymetry data exist from various sources and were 
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developed for different purposes. Figure 5 shows the distribution and types of input 
bathymetry data. Figure 6 illustrates types of the raw point data bathymetry that we have 
acquired, and gaps presented in the data. 

 
Figure 5 Map showing different types of input bathymetry data. 

Bathymetry point data were received for large sections of the Murray River (Hume to 
Wellington) (see Figure 5) as well as sections of the Darling Anabranches and the Edward 
River. Some small sections were clearly derived from gridded bathymetry having dense 
regular spacing of 10 to 15m. Most of the points were a continuous line of points following 
either a zig-zag or square wave track, with the remainder being transects perpendicular to 
the riverbanks at regular intervals ranging from a few hundred metres to many kilometres 
apart. Coverage for the Murray downstream of Lake Hume was continuous in some form 
(grid, track or transect) save for gaps between Narrung and Mildura. Various techniques 
were developed to process these data to form a consistent bathymetry ready to be 
enforced into the new version of the DEM. 
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Figure 6 The raw point data bathymetry came in types: zig-zag track (upper left), square wave (upper 
middle), grid derived (upper right), close transects (lower left), spaced transects (lower middle) as 
shown above. The point datasets (black dots) are shown on top of the elevation, which is shown on a 
relative scale of dark brown (higher) to light blue (lower). The gaps in the data (e.g. along Murray 
River as shown in lower right panel) were filled with interpolated data based on the nearest transects. 

Grid derived points were interpolated directly to a 5m grid conforming to the DEM using 
Triangular Irregular Network (TIN) in ArcGIS. The remaining point configurations were 
unsuitable for direct interpolation to a DEM conforming raster in their received form, and so 
underwent a data point densification process to make them suitable. 

Figure 7 illustrates the method developed by Steve Marvanek to form gridded bathymetry 
from observed data points through data point densification. This was achieved by first 
creating a dense regular array of points consisting of 30 to 40 files of closely spaced (~10- 
~20m) points across the width of the channel and following the course of the channel.  

Input bathymetry point data was transferred to its nearest (within 5m to 20m search radius) 
array point. Intervening array points within a given file that had not inherited a close 
neighbouring bathymetry datapoint value, then had a value linearly interpolated from its 
next upstream and downstream value.  

Bathymetry data points (black) confer their bathymetry value to nearby array points (red). 
Remaining array points (blue) then have an interpolated value calculated based on the 
upstream and downstream conferred data in their file. This dense array of data was then 
interpolated to the DEM conforming 5m raster using TIN. The rasterised bathymetry data 
were then inserted into the DEM replacing the non-ground channel values with bathymetry 
values. 
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Figure 7 Illustration of the method that processes the zig-zag track height observations (black) to 
form bathymetry. The bathymetry data points (black) confer their bathymetry value to nearby array 
points (red). Remaining array points (blue) then have an interpolated value calculated based on the 
upstream and downstream conferred data in their file. 

4.2 Hydrodynamic modelling results 
The RQ7 newly proposed model’s predicted water depth will need to be validated with 
‘true’ water depth across the floodplain. As the water depth observations on floodplain are 
rare and difficult to obtain, for the purposes of the validation, we will be limited by mainly 
using the depth predicted by a hydrodynamic model as ‘true’ water depth. Although there 
are many previous hydrodynamic modelling experiments carried out in the MDB, only a 
few of them have the datasets available in the format and quality that can be used for the 
purpose of the RQ7 research. For the comparison to be meaningful, it was essential for 
the hydrodynamic model to be of the highest standard. The RQ7 project evaluated 
hydrodynamic models based on: 

• whether they were peer reviewed, especially whether they had been revised and 
improved based on experience or feedback. 

• whether they were calibrated to dynamic conditions (as distinct from steady-
state models). 

• the quality of DEM and channel bathymetry – only those based on high 
resolution LIDAR digital terrain models were considered. 
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• the resolution of the floodplain in the modelling, with preference to flexible 
meshes. 

• consistency with other information such as gauged levels and spot heights. 

The project identified models that best met these criteria – three of which would be used in 
an initial assessment of model accuracy and an additional two that would be acquired for 
later analysis. For the initial three models, we extracted outputs of model depth for 
calibration events to use as validation datasets. This dataset encompassed three locations 
in the MDB, 11 river reaches and seven calibration events.  

 

Figure 8 The locations for the available validation datasets including A. The Lower Balonne River; B. 
Namoi River; C. Murray River in South Australia; and D. three reaches of the Murrumbidgee River. 

As shown in Figure 8 the first location (A) covered the area of the Balonne River 
downstream of the St George township in Queensland to Weilmoringle in New South 
Wales. The Culgoa River is an upper tributary of the Darling River in the far north-west of 
the MDB. The second location (B) was the Namoi River from Keepit Dam to the junction of 
the Barwon River near Walgett in New South Wales (one of the upper tributaries of the 
River Murray). The third location (C) was between Lyrup and Lock 3 on the River Murray in 
South Australia. The forth location (D) was the middle reaches of the River Murray (around 
Gunbower-Koondrook Perricoota forests) and lower reaches of the Murrumbidgee River 
(near the townships of Narrandera, Hay and Balranald). The locations were broken down 
into reaches based upon the location of streamflow gauges and water infrastructure, 
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location of major confluences or distributaries, and location of major irrigation districts. As 
a result, the Balonne study location was broken into four reaches, the Namoi study area 
was broken into four reaches and the SA study location was broken into three reaches. 

Table 3 describes the hydrodynamic models for the Balonne, Namoi and Lower River 
Murray. In total there were seven flood events spread across the three study locations with 
peak discharges of around 25 GL/d to 300 GL/d.  

Table 3 Hydrodynamic model properties of Balonne, Namoi and Lower Murray 
 BALONNE RIVER NAMOI RIVER LOWER-RIVER MURRAY 
Shortened form in graphs LBS (Lower Balonne 

System) 
Namoi SA (South Australia) 

Jurisdiction Queensland, New South 
Wales 

New South Wales South Australia 

Model Type MIKE 21 – 90m Grid MIKE 21 Flexible Mesh 
(FM) 

MIKE HYDRO River for 
channel, MIKE 21 Flexible 
Mesh for floodplain 

Dynamic/steady Dynamic Dynamic Dynamic for 25 GL/d, 
steady state for 90 GL/d 

Flood discharge (nominal) 150 GL/d, 50 GL/d, 250 
GL/d, 300 GL/d 

185 GL/d 25 GL/d, 90 GL/d 

Dates modelled 1995-12-27 to 1996-01-30  
2008-01-19 to 2008-02-23  
2010-12-28 to 2011-01-28  
2012-01-28 to 2012-03-02 

1998-07-20 to 1998-07-31 2013-09-06 to 2013-11-03  
2016-12-09 
 

Gauging station used for 
measurement 

Balonne at St George 
(422201), 

Namoi River at Molle 
(419039) 

Lock 1 U/S (A4260902) 
and Calculate for to South 
Australia (A4261001) 

Dates of imagery used 1996-01-28, 2008-02-05* 
(filled with imagery from: 
02-22, 01-29, 02-06), 
2011-01-21, 2012-02-17 

1998-07-24 
(Aerial photography) 

2013-10-30,  
2016-12-09 (filled with 
imagery from 2016-12-25) 

Publications Dutta et al, 2016 (NSW OEH, 2017) Montazeri and Gibbs, 2020 

Notes There are significant 
irrigation districts in the 
area (e.g. Cubbie station). 
We have defined the 
reaches to avoid these 
areas. 

LandSat imagery was not 
available for this flood. The 
channel was defined using 
cross-sections. 

The bathymetry of some 
small permanent lakes 
were not fully incorporated 
in model. 

Source: Teng et al. (2022) 

Table 4 describes the hydrodynamic modellings for the lower Murrumbidgee River and the 
middle reaches of the River Murray.  
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Table 4. Hydrodynamic model properties of Gunbower and Lower Murrumbidgee 

 LOWER MURRUMBIDGEE RIVER MID-RIVER MURRAY RIVER 
Shortened form in graphs Bidgee Gunbower 

Jurisdiction New South Wales New South Wales, Victoria 

Model Type TUFLOW 1D + 2D 
One model for each of Weir Pool 6, 10 
and 11 

MIKE HYDRO River for channel, MIKE 
21 Flexible Mesh for floodplain 

Dynamic/steady Dynamic Dynamic 

Flood discharge (nominal)   

Dates modelled Weir Pool 6: 2021-06-13 (warm up 
from 2021-06-06) to 2021-08-26 
Weir Pool 10: 1992-10-06 to 
1992-11-27; 2021-07-10 to 
2021-09-11 
Weir Pool 12: 2017-11-20 to 
2017-12-21; 2021-06-24 to 
2021-10-01; 2010-10-15 to 
2011-02-09; 2016-05-10 to 
2016-08-29 

2016-09-17 to 2016-10-22 

Gauging station used for 
measurement 

Weir Pool 6: Murrumbidgee River at 
Narrandera (410005); Yanco Creek at 
Offtake (410007); Murrumbidgee D/S 
Yanco Weir (410036) 
Weir Pool 10: D/S Hay Weir (410136); 
D/S Maude Weir (410040); Maude 
Storage (41010941); Nimmie Storage 
(41010287) 
Weir Pool 12: Murrumbidgee D/S 
Maude Weir (410040); Murrumbidgee 
D/S Redbank Weir (410041); Redbank 
Storage (41010966); and 
Murrumbidgee D/S Balranald Weir 
(410130) 

Murray River at Torrumbarry (409207);  

Publications Burke et al., (2022); Tetley (2022); 
Wells and Streeton (2022) 

 

Notes  At time of publication not all information 
about this model was available 

 

4.3 Gauged flow, water level and cross section 
The gauged flow and water level data are needed to relate flow and water level for 
interpolation and model simulation. The velocity data are required to estimate the travel 
time for each modelling reach, which is essential to determine the size of modelling 
regions. Velocity 𝑢𝑢 can be derived from  

𝑢𝑢 = 𝑄𝑄
𝐴𝐴
     (1) 

where 𝑄𝑄 is flow (in m3/sec or ML/day), 𝐴𝐴 is cross section area, which is a function of water 
level. 

Table 5 lists the online data portals that can be used to extract MDB gauged water data 
observations and gauge information. The quality assurance of the data presented some 
challenges, particularly in determining whether the gauged water levels are referenced to 
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local level datum or AHD elevations. To address this, we have collaborated with MDBA to 
obtain operational data wherever available. Additionally, we have reached out to State 
governments to request data along with the associated metadata. We have also accessed 
a snapshot of datasets from previous projects where licenses have been granted, such as 
the AWRA and MDB-EF projects. This has been an iterative process, adapting to changing 
requirements and incorporating new data as it becomes available, involving close 
coordination with data custodians and tasks such as manual extraction, digitization, and 
other data processing efforts. The compiled dataset has been used by the team for the 
purpose of this project but has not been published due to licensing restrictions. 

Table 5 Online water data portals 

NAME WEB SITE PROVIDER DATA 
COVERAGE 

Water Data Online http://www.bom.gov.au/waterdata/ Bureau of Meteorology 
(BoM) 

Nation-wide 

The River Murray 
system Live river 
data 

https://riverdata.mdba.gov.au/system-view/ 
MDBA The River 

Murray System  

WaterNSW https://realtimedata.waternsw.com.au/ NSW government NSW 

Water Data SA https://water.data.sa.gov.au/ SA Department for 
environment and water 

SA 

Water 
Measurement 
Information System 
VIC 

https://data.water.vic.gov.au/ 

VIC Department of 
environment, land, water 

& planning 

VIC 

Water monitoring 
information portal 

https://water-
monitoring.information.qld.gov.au/ 

QLD government QLD 

ALS client data 
portal https://hydportal.alsglobal.com/web.htm ACT Icon Water/ACT gov ACT 

4.4 Soil property data 
The soil property data are required for estimating infiltration in the model simulation as 
described in Section 2.1.4. We have obtained the soil property data, namely, saturated 
hydraulic conductivity for the top soil layer (0 – 10 cm), shallow soil layer (10 – 100 cm) 
and deep soil layer (100 – 600 cm), available water holding capacity for the top soil layer 
(0 – 10 cm), shallow soil layer (10 – 100 cm) and deep soil layer (100 – 600 cm) from the 
Australian Water Resource Assessment Landscape Model (AWRA-L). The nation-wide 
data layers at 90 m resolution, which was aggregated to 1 km and 5 km resolutions to 
support AWRA-L, will be extracted for modelling regions to estimate amount of water lost 
to infiltration for each grid cell at each time step. The methodology for estimating soil 
hydraulic properties grids using pedotransfer functions and digital soil mapping is 
described in Appendix A in (Vaze et al., 2018). Vaze et al. (2018b) also provides a brief 
description of each of the spatial layers (including the source data used to derive the 
layers) that are used in the continental AWRA-L implementation. 

http://www.bom.gov.au/waterdata/
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4.5 Climate data 
For the historical period, daily rainfall of each grid cell was sourced from the SILO gridded 
dataset (Jeffrey et al., 2001), and potential evapotranspiration was calculated from the 
SILO climate surfaces using Morton’s wet environment algorithms (Chiew and McMahon, 
1991; Morton, 1983). Future rainfall projections were generated using the Daily Scaling 
method (Chiew et al., 2009), informed by climate change signals from 37 CMIP6 GCMs for 
Shared Socioeconomic Pathway 5-8.5 (SSP5-8.5) (for a 30-year time slice centred on 
2060 relative to a 30-year time slice centred on 1990, representing approximately 2.3°C 
average global warming) (Zheng et al., 2024). The daily scaling method perturbs historical 
climate time series data based on the change signals derived from GCMs, reflecting 
changes in both the means and the shape of the daily rainfall distribution, which is 
important for capturing the intensification of extreme rainfall simulated by GCMs. Future 
potential evapotranspiration was generated using the seasonal scaling method (Chiew et 
al., 2009), which was also informed by the corresponding CMIP6 GCMs. 
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Part II Research 
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1 Introduction 

This chapter details the research conducted under RQ7 to advance our understanding and 
modelling capabilities of floodplain inundation across the Murray–Darling Basin (MDB). 
One of our primary focuses has been to improve the accuracy of surface water detection 
from satellite imagery, utilizing data from high-resolution sources, particularly Landsat and 
Sentinel-2. These efforts have enhanced our ability to monitor water dynamics over vast 
areas, laying the foundation for more precise and robust floodplain modelling. In addition, 
we benchmarked water depth estimation models, ensuring that the derived measurements 
align with the results from hydrodynamic models, which has been crucial for accurate 
depth and volume estimations across the floodplain. 

The findings from such research have led to the creation of extensive, basin-wide datasets 
and the development of the RQ7 model. The floodplain inundation extent and water depth 
datasets provide an unprecedented opportunity to quantify essential inundation 
characteristics, including trends, inter- and intra-annual variability, and other critical 
metrics. They allow us to link floodplain inundation patterns with both current and projected 
climate scenarios. This research has significantly enhanced our understanding of how 
future climate changes may impact floodplain dynamics, especially regarding the 
frequency and intensity of inundation events. 

Moreover, we developed a floodplain ecological response model to utilise the inundation 
data generated by the RQ7 model. This ecological model quantifies the responses of 
floodplain ecosystems, with a particular focus on vegetation dynamics. By linking 
inundation characteristics to ecological outcomes, the response model provides a valuable 
tool for predicting and understanding the environmental impacts of flooding. This work 
supports resource managers and policymakers in making informed decisions regarding 
environmental water allocations, enabling more adaptive and sustainable floodplain 
management strategies under varying climate conditions. 

Here we provide a comprehensive overview of the research approaches, methodologies, 
and findings that underpin the RQ7 model and its associated datasets, highlighting the 
project's contributions to floodplain inundation science and environmental management in 
the MDB. 
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2 Surface water detection from satellite imagery 

Accurately mapping surface water extent is critical in estimating water volume and 
monitoring changes for effective water management. This is essential for human 
consumption, agricultural use, and maintaining the ecological health of wetlands and 
rivers. With a growing population and changing climate, the need for precise information 
on available water is more critical than ever, especially in Australia, which is the driest 
inhabited continent in the world and continues to experience large interannual variability 
between dry and wet periods. 

Ground observations of surface water extent can provide valuable information but are not 
always available, and large-scale synopses of current and historical water extent through 
gauging stations and high-water marks are hard to obtain. Remote sensing technologies 
offer an affordable means of capturing surface water extent with reasonable spatial and 
temporal coverage suitable for water monitoring. The Landsat satellite series' spatial 
resolution (30m) makes it suitable for capturing (subject to cloud cover) much of the fine 
spatial detail of a large river basin. The Landsat archive provides data dating back to 1987 
for the thematic mapper series. Each Landsat satellite returns to the same point every 16 
days. Given there can be overlap in the operation of one satellite with its replacement, the 
temporal frequency varies through history and can be greater than 16 days.  

The Water Observations from Space (WOfS) dataset is generated by Geoscience 
Australia and available through Digital Earth Australia (Mueller et al., 2016). WOfS uses a 
decision tree approach based on a selection of Landsat spectral bands and indices, as 
well as ancillary products (including topography and hydrology layers) to constrain water 
extent to likely areas. Individual WOfS images of surface water extent, along with 
summary statistics from the 1980s to the present, are available for Australia for the entire 
Landsat archive. WOfS provides a conservative estimate of surface water extent, making it 
a robust product, but it is more likely to underestimate than overestimate water extent 
(Sims et al., 2018).  

To address the challenge associated with the surface water detection from satellite 
imagery, we assessed the performance of various commonly used indices across different 
environments. Based on our findings, we developed a Multi-Index Method (MIM) for 
detecting surface water from Landsat imagery. To extend its applicability to Sentinel-2 
data, we recalibrated the MIM to account for differences between the two satellite 
platforms. Additionally, we explored methods to optimize spatial alignment between the 
Landsat MIM and Sentinel-2 MIM, ensuring a seamless and consistent water extent 
product. Significant effort was also dedicated to enhancing the MIM’s performance in 
wetlands and densely vegetated areas. These advancements are detailed in the following 
sections. 

2.1 Development of Multi-Index Method (MIM) surface water 
detection algorithm 

This section is adapted from Ticehurst et al. (2022). 
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A multi-index method (MIM) has been developed for mapping surface water extent within 
the Murray-Darling Basin (Ticehurst et al., 2022). It is based on existing indices, such as 
the modified Normalised Difference Water Index (mNDWI; Xu, 2006), Fisher's water index 
(FWI; Fisher et al., 2016), and the Tasseled Cap Wetness Index (TCW; (Dunn et al., 
2019), which are already used for mapping surface water extent. Each index is applied in 
the area where it performs best, and the resulting rule-set uses NDWI>–0.3 to map water 
in major perennial rivers, TCW>-0.035 to map water in wetlands, and the maximum of 
NDWI>0 and FWI>0.63 for mapping water in the remaining areas. Based on 440 validation 
plots in the Murray-Darling Basin, this resulted in an overall balanced accuracy of 93% 
(Table 6). 

Table 6 Accuracy of various indices. 

Water Index Balanced accuracy 

MIM 93% 

Fisher WI 91% 

mNDWI>0 91% 

mNDWI>-0.3 90% 

TCW >-0.035 92% 

TCW >-0.01 90% 

WOFS 86% 

Using the water index with the best performance for the different water environments (i.e., 
‘Major Perennial Rivers’, ‘Wetlands’, ‘Large Water Storage’, and ‘Remaining plots with 
water’) within the MDB, the MIM was used for mapping surface water across the basin 
(Figure 9 with the Landsat bands needed from DEA are the red, green, blue, near infrared, 
the two shortwave infrared bands, and the cloud mask band-fmask). This multi-index 
method uses the following set of rules: 

 

  
Figure 9 (Figure 3 from Ticehurst et al., 2022). Multi-Index method developed for mapping surface water 
across the Murray Darling Basin (SWIR1 and SWIR2 = shortwave infrared bands, fmask = Landsat cloud 
mask, mNDWI = modified Normalised Difference Vegetation Index, TCW = Tasseled Cap Wetness index). 
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The original combined MIM and WOfS surface water extent datasets were produced to 
cover the entire MDB from 1988 to 2022. The latest dataset (from 1988 to June 2024) can 
be used to explore long-term and seasonal trends across the basin as well as any area of 
interest within the basin. 

2.2 Incorporating Sentinel-2 data 
In preparation for generating the new version of the floodwater depth data, we have 
incorporated the Sentinel-2 imagery to enhance the surface water detection via 
improvements to the original Multi-index Method (MIM) (Ticehurst et al., 2022). 

To maximise detection of water as well as ensure the best spatial match between the 
Landsat MIM and Sentinel-2 MIM to create a seamless water extent product, different 
data-loading and resampling methods have been investigated. Enforcing the corner 
coordinates of the bounding box to be the same in both Landsat and Sentinel-2 proved to 
be better than using the generic data-load option. While the bilinear resampling method 
showed the smallest difference between the Landsat and Sentinel-2 data, it was unable to 
detect the same finer water features that the nearest neighbour resampling method could. 
Hence the nearest neighbour resampling method was used. Figure 10 below shows how 
the different resampling methods influence the detection of water in the Landsat and 
Sentinel-2 modified Normalised Difference Water Index. The histogram shows that the 
bilinear resampling method has the smallest difference between Landsat and Sentinel-2. 
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Figure 10 Influence of different resampling methods (nearest neighbour (NN), bilinear (BL), cubic 
convolution (CB)) between Sentinel-2 and Landsat imagery for detecting water. 

 

2.3 Investigating new cloud masking algorithm 
Cloud masking remains an issue when reading in Landsat data due to the difficulty in 
separating cloud shadow from water. It is also a major challenge when reading in the 
Sentinel-2 data (due to no Sentinel-2 thermal bands – which the Landsat fmask method 
utilises). A new cloud-masking layer (s2_cloudless_mask) is currently available through 
Digital Earth Australia, which works better than the Sentinel-2 fmask, although it does 
mask a lot of water bodies due to their similar appearance to cloud shadow. A new method 
has been tested to help remove the cloud and cloud shadow that is not automatically 
removed through Landsat’s fmask and Sentinel-2’s fmask for the monthly maximum MIM 
extent. For Sentinel-2 the s2cloudless_mask is also used to help identify cloudy scenes. 
This new method looks at the persistence of pixels that appear as bright cloud or dark 
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shadow (and its classification in the fmask layer) throughout a month and removes images 
that are mostly cloud/shadow. Figure 11 (left) shows the maximum MIM water extent for 
September 2022 derived from Landsat and Sentinel-2 using its standard fmask and 
s2_cloudless_mask. Some areas are classified as water when they are obviously cloud. 
Figure 11 (right) shows the same maximum MIM water extent, but with the new cloud 
masking method applied. This method has removed all the cloud from the monthly 
composite in this example.  

   
Figure 11 Maximum MIM water extent for September 2022 using standard fmask (left) and the new 
method (right).  

2.4 Improving MIM method for wetlands 
The wetlands layer used in the MIM method has also been updated. The MIM method 
relies on the Australian National Aquatic Ecosystem (ANAE) wetlands layer to determine 
which areas use the Tasseled Cap Wetness (TCW) index to map surface water in 
wetlands. The previous method only applied the TCW index to wetlands defined as lakes, 
bogs, swamps, etc, but not floodplains. This leads to differences between Victoria and 
NSW wetlands due to different definitions of these water bodies, leading to differences in 
water extent across the Victoria-NSW border. The new method now applies the TCW 
index to floodplain wetlands that are forested, as well as lakes, bogs, swamps, etc. This 
gives a more realistic classification of water in the forested wetlands such as the Barmah-
Millewa forest. Figure 12 shows the old method (left) compared to the new method (right) 
for the percentage of observations from 1988 to 2021 when a pixel is wet. 
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Figure 12 Comparison of the old method (left) and the new method (right) for improved classification 
of water in the forested wetlands in the Barmah-Millewa forest.  

2.5 Developing an innovative method to detect water under 
vegetation 

This section is adapted from Lymburner et al. (2024). 

We have been working with Leo Lymburner (from Geoscience Australia who is spending a 
year at CSIRO) to improve the identification of water under vegetation. Current methods 
that use remote sensing to identify water under vegetation are challenging and 
underestimate water extent. We have developed a new method to map flooded forests 
(focusing on River Red Gum forests), which is based on the change to the Shortwave 
Infrared (SWIR) surface reflectance for surface water with forest cover. This has been 
written into a manuscript which has been published in Hydrological Processes: "Seeing the 
Floods through the Trees: Using Adaptive Shortwave Infrared thresholds to map 
Inundation under Wooded Wetlands" Leo Lymburner, Catherine Ticehurst, Maria 
Fernanda Adame, Ashmita Sengupta, Emad Khavei (Lymburner et al., 2024). A part of 
these findings (using a seasonal SWIR threshold to remove tree shadow) has been 
applied to the updated MIM. 

Figure 13 below, which is Figure 10 from Lymburner et al. (2024), shows the water extent 
identified in the Gunbower, Pericoota, Koondrook site for 2016 and 2019, along with their 
flooded extent (in area) compared to nearby stream gauge stage height. 
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Figure 13 (Figure 10 from Lymburner et al. ,2024). Improved water extent identification in the 
Gunbower, Perricoota, Koondrook site for 2016 and 2019, along with their flooded extent (green) 
compared to nearby stream gauge stage height (red). 
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3 Benchmarking water depth estimation models 

This section is adapted from Teng et al. (2022). 

Simple models continue to be important for continental-scale floodwater depth mapping 
due to the prohibitively expensive cost of calibrating and applying hydrodynamic models. 
We have investigated the accuracy of three simple models for floodwater depth estimation 
from remote sensing derived water extent and/or Digital Elevation Models (DEMs) in 
semiarid regions. The three models are Height Above Nearest Drainage (HAND; Nobre et 
al., 2011), Teng Vaze Dutta (TVD; Teng et al., 2015b, 2019), and Floodwater Depth 
Estimation Tool (FwDET; Cohen et al., 2018).The model accuracy and nature of errors are 
established using industry's best practice hydrodynamic models as benchmarks in three 
regions in eastern Australia. The overall results show that FwDET tends to underestimate 
(by 0.32 m at 50th percentile) while HAND and TVD overestimate floodwater depth for 
almost all floods (by 0.97 and 0.98 m, respectively). We quantify how switching the DEM 
from 5 m LiDAR to national or global data sets DEM-H (Gallant et al., 2011), MERIT 
(Yamazaki et al., 2019), or FABDEM (Hawker et al., 2022) can affect different models 
differently; and we evaluate model performance against reach geomorphology and 
magnitude of flood events. The findings emphasize the importance of choosing a model 
that is fit for the intended application. By describing the applicability, advantages, and 
limitations of these models, this paper assists practitioners to choose the most appropriate 
model based on characteristics of their study area, type of problems they try to solve, and 
data availability. 

As shown in Figure 14, HAND uses observed levels and a Digital Elevation Model (DEM) 
to calculate flood depth at address points. TVD uses an inundation extent raster and a 
slope-adjusted DEM to calculate the maximum surface water level across inundated 
areas. FwDET uses an inundation extent raster and a DEM to calculate depth by 
extrapolating between surface water levels identified along the perimeter of an inundation. 
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Figure 14 (Figure 2 from Teng et al., 2022). Conceptual models and processing steps for deriving 
depth from Height Above Nearest Drainage (HAND), Teng Vaze Dutta (TVD), and Floodwater Depth 
Estimation Tool (FwDET). 

The differences between the water depth predictions from the three simple models and 
benchmark for the 26 flood scenes are shown in Figure 15. Positive values in Figure 
15 represent underestimation of the water depth by the simple models and negative values 
represent overestimation. There is a large variation in the predictive capability of the three 
simple models, and there are also reasonable differences for each of the simple models 
for different flood/river reach combinations. Overall, HAND consistently overestimated the 
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depths (substantial overestimation), TVD also consistently overestimated the depth 
(smaller overestimation compared to HAND), whereas FwDET consistently 
underestimated the water depths. There was no one model that consistently outperformed 
the others for all reaches. 
 

 
Figure 15 (Figure 3 from Teng et al., 2022). Difference between Height Above Nearest Drainage (blue), 
Teng Vaze Dutta (orange), and Floodwater Depth Estimation Tool (green) predictions and 
hydrodynamic model outputs (benchmark) for the 26 flood scenes. For each combination, the 
median is shown with a horizontal line, the boxes extend from 25th to 75th percentile and the 
whiskers from 2.5th to 97.5th percentile. 

The overall results showed that FwDET had a tendency to underestimate floodwater depth 
(by 0.32 m at 50th percentile) while HAND and TVD overestimated floodwater depth for 
most floods (by 0.97 and 0.98 m, respectively). 

FwDET was the most accurate at the floodplain edges with median MAE of 0.49 m for 
floodwater depths below 2 m, but the accuracy declined with deeper inundation (MAE of 
1.41 m for water depth >4 m). All three models had similar performances for water depths 
between 2 and 4 m, but TVD provided better depth estimates for water depths above 4 m 
(MAE of 1.35 m). The distribution of FwDET errors for a combined analysis of 26 flood 
scenes was reasonably consistent and comparable with a Cauchy distribution, which 
suggests that similar errors could be expected for events/reaches outside our study area. 

Model accuracy for all three models improved slightly with an increased magnitude of 
event, despite a weak correlation across validation data (R2 from 0.01 to 0.16). The 
evaluation of model performance against reach geomorphology showed that it is difficult to 
select a more suitable model based on the characteristics of the reach/floodplain. 
Although, as mean bank-full width increased, MAE increased for all three models (R2 of 
0.19–0.46), which suggests it is generally more difficult to estimate depth in wider rivers 
(irrespective of the magnitude of flood being modelled). 

For users who do not have access to a high resolution LiDAR DEM, a national or global 
DEM such as DEM-H, FABDEM, or MERIT could be used instead, expecting a decrease 
in model accuracy. This decrease is the least prominent with FwDET (median MAE 
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increasing from 0.57 to 0.65–0.72 m in this study), followed by TVD and HAND. The 
results highlight that it is critical for HAND to use a hydrologically conditioned DEM to 
provide meaningful results. 

The findings from this study showed that, while FwDET was the top performer overall, 
HAND was most suited for users with no/limited access to flood extents, and TVD 
performed the best for deep waters. This emphasizes the importance of using the 
appropriate model for the intended application, for example, spatial estimates of floodwater 
depth for emergency response such as road closures. 

Given the various aspects of the modelling considered, the number of flood events 
examined, the number of hydrodynamic models used for validation, and the consistency 
with other literature, we expect that these findings would extend to other semiarid regions 
where similar input data are available. 
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4 Creating a Basin-wide water depth dataset 

This section is adapted from Penton et al. (2023). 

With growing concerns over water management in rivers worldwide, researchers are 
seeking innovative solutions to monitor and understand changing flood patterns. In a 
noteworthy advancement, stakeholders interested in the changing flood patterns of the 
Murray Darling Basin (MDB) in Australia, covering an area of 1 million km2, can now 
access a consistent timeseries of water depth maps for the entire basin. The dataset 
covers the period from 1988 to 2022 at two-monthly timestep and was developed using 
remotely sensed imagery and a flood depth estimation model at a spatial resolution of 
≈30 m, providing a comprehensive picture of maximum observed inundation depth across 
the MDB. Validation against 13 hydrodynamic model outputs for different parts of the MDB 
yielded a mean absolute error of 0.49 m, demonstrating reasonable accuracy and reliability 
of the dataset. The resulting dataset is best suited to system-wide analysis but might also 
be useful for those interested in the history of flooding at specific locations in the system. 
We provide the dataset, visualization tools, and examples to support ongoing research. 

Figure 16 shows the workflow that generated flood depth products using the FwDET 
algorithm. The three panes show steps of the water depth product development. (a) Input 
data processing involves acquisition of two products: two-monthly maximum water surface 
extent (from Landsat) and a high-resolution Digital Elevation Model (combined from data 
sources), which we split into 23 regions for processing. (b) Floodwater Depth Estimation 
Tool (FwDET) algorithm v2 was used to identify the surface water elevation at the 
boundary (perimeter) of inundated areas. The perimeter water surface levels (elevations) 
were interpolated across inundated areas to provide continuous surface water levels. The 
depth was calculated by subtracting the Digital Elevation Model from the surface water 
levels and merging (recombining) across the Murray Darling Basin. (c) The resulting water 
depth rasters were archived in CSIRO’s Data Access Portal, and were also distributed 
through web services for machine access (i.e. Web Mapping Service) and presented 
through a geospatial visualisation platform for point-and-click visualisation of water depth 
across the floodplains of the Murray Darling Basin. 

The two-monthly flood depth product provides a visualisation of specific events and a 
longitudinal perspective on flooding across the MDB. For users interested in specific 
events at a location, use the geospatial visualisation platform to confirm with local experts 
that the product has captured flooding in the areas expected to be inundated. The 
geospatial visualisation platform can be accessed through a web browser at 
https://map.csiro.easi-eo.solutions/. In the web browser, load the product by clicking 
‘+Explore map data’, search the catalogue for ‘Flood Depth’ and click the ‘+’ next to the 
latest version of the flood depth product. The product will become visible once zoomed into 
a location of interest (inside the MDB). When satisfied, the maximum flood depth product 
for specific dates can be downloaded from CSIRO’s Data Access Portal (DAP) for 
ingestion into a GIS application. If confirming with local experts is not practicable, 
alternatives include searching archives such as Geoscience Australia’s Australian Flood 
Risk Information Portal, aerial photography archives – e.g. New South Wales Historical 
Satellite Imagery, media reports or social media. 
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For researchers interested in the longitudinal perspective on flooding across the MDB, it is 
necessary to access the whole dataset from CSIRO’s DAP. A Python Jupyter Notebook 
(example_water_depth.ipynb) provided as part of the code gives an example of selecting 
time periods (2021–2022), spatially sub-setting the data (e.g. near Macquarie Marshes 
Nature Reserve), visualising recent events and undertaking rudimentary statistical 
analysis. The notebook provides an example of calculating a short timeseries of water 
volumes and incorporating bias-correction. 

The study’s findings have substantial broader impacts, benefiting communities, flood 
managers, decisionmakers, environmental conservation, and stakeholders in the MDB. 
The dataset supports evidence-based decision-making and ongoing research.  

 

 
Figure 16 (Fig 2 from Penton et al., 2023) Steps involved in building and distributing the flood water 
depth product for the Murray Darling Basin.  
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5 Development of a floodplain ecological 
response model 

This section is adapted from Teng et al. (2024a). 

Quantitative assessment of floodplain ecological response to flow regimes is challenging 
but essential for setting targets and estimating impacts for environmental water 
management. We have developed a model, as described in Figure 17, which takes long-
term (90 years) and large-scale (9 million grid cells) flood maps as input to estimate the 
response of floodplain vegetation using infinitely differentiable functions. The model, 
named Floodplain Ecological Response Model (FERM), is calibrated against 1-D temporal 
Leaf Area Index (LAI) data from the WAVES energy and water balance model at a daily 
timestep, and validated on the entire floodplain using condition data of the Icon Sites of the 
Murray River aggregated to a yearly timestep. Results show that FERM can adequately 
simulate the response of different types of vegetation on the floodplain, while reducing the 
data requirements and runtime drastically compared to other approaches. The FERM 
modelling approach is a first step towards a quantitative modelling of floodplain forest 
ecosystems at large scale with realistic data and computation requirements. It is intended 
to indicate the potential of such an approach in semi-arid systems where data availability is 
limited, and to encourage the further research needed to improve our understanding of 
floodplain forests and our capacity to model the impact of floods on their ecological 
response. 

 
Figure 17 Graphic abstract of Teng et al. (2024a.) 
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6 Linking floodplain inundation with climate 

This section is adapted from Teng et al. (2024b). 

The two-monthly maximum water depth maps of Teng et al. (2023) provide a 
comprehensive quantitative description of floodplain inundation over the past 35 years 
(1988–2022). We quantified inundation frequency or average recurrence interval (ARI) and 
trends over the past 35 years, which provided important information about basin wide 
connectivity, ecological hotspots, and potential habitats for restoration (Teng et al., 2024). 
In the MDB, the flood-affected area (i.e., with ARI≤ 35 years) covered approximately 
274,049 km2, representing 25.9% of the total MDB area. The region with high flood 
inundation frequency (i.e., ARI≤ 2 years) encompassed around 30,400 km2, with a mean 
elevation of 147.5 m. Meanwhile, the area with medium flood inundation frequency (ARI 
between 8-16 years) spanned approximately 79,204 km2, with a mean elevation of 152.3 
m. 

We found that the proportion of flood-affected areas of Northern MDB (24.8%) was lower 
than Southern MDB (27.1%), while the area proportion of high inundation risk was higher 
in Northern MDB (3.0%) compared to Southern MDB (2.8%). Results indicate that 
Northern MDB may experience lower flooding risks than Southern MDB but could be more 
severely affected by extreme inundation events.  

Flood inundation is largely determined by hydroclimate conditions. Identifying the dominant 
hydroclimate drivers can contribute to predicting flood inundation potentials under a 
changing climate. Figure 18 shows the correlation of the rainfall and runoff metrics against 
the annual maximum flooding water extent.  

We found that most of the hydroclimate variables considered were generally correlated 
well with the annual maximum flooding water volume and hence inundation extent. The 
maximum 30-day streamflow was overall the most dominant driver of flood inundation and 
a suitable proxy for predicting flood extent and volume under a changing climate.  

Correlations between flood inundation and dominant hydroclimate variables were found to 
be stronger in the Northern Basin than the Southern Basin, indicating that the Northern 
Basin is more responsive to hydroclimate change in terms of flood inundation.  

.  
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Figure 18 (Figure 3 from Teng et al., 2024b) Relations between maximum inundation extent and 
hydroclimatic variables. x-axis is scaled hydroclimatic variables, y-axis is scaled maximum 
inundation extent.  

We characterised the 35-year perspective of inundation frequency in comparison to the 
instrumental historical 123-year period (1900-2022) and future projections under climate 
change informed by CMIP6 GCMs. The analyses showed that the Annual Exceedance 
Probabilities (AEPs) of modelled runoff in the 35-year period were higher than those of the 
123-year period. Especially for the large flood events (see Figure 19 ). 

While future climate projections indicate a drier MDB with lower mean annual runoff, the 
projections for changes in future floodplain inundation are less significant, as illustrated by 
Figure 19. This is due to the compensating effects of more intense extreme high rainfall 
versus drier antecedent catchment conditions under climate change. For the Southern 
MDB, projected AEP of the inundation proxy is mostly close to that of the century-long 
baseline. In the Northern MDB, however, moderate to severe floods (AEP < 0.05) are 
projected to increase, while more frequent floods are expected to stay within historical 
bonds.  
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Figure 19 (Figure 4 from Teng et al., 2024b) Comparison of recent, historical, and future floodplain 
inundation annual exceedance probabilities. AEPs for the recent observational 35 years, historical 
123 years, and future projections, where an AEP of 0.05 is equivalent to 1-in-20 year floodplain 
inundation, and similarly 0.1 – 1-in-10 year, 0.2 – 1-in-5 year, 0.5 – 1-in-2 year, 1 – 1-in-1 year. The 
modelled future projections are shown as light blue shades with the median shown as dark blue 
lines.  

The knowledge from this study has significant implications for communities, decision-
makers, environmental watering efforts, and stakeholders within the MDB. We found that 
the maximum 30-day runoff closely correlates with flood inundation in the MDB. This 
finding offers a reliable proxy for flood inundation, which is critical given the challenges in 
obtaining spatial inundation data. It also implies that, even with anthropological influences, 
the natural hydrological processes continue to play a dominant role in flood dynamics 
within the basin. Understanding this correlation can aid in better predicting and mitigating 
the impacts of flooding. 
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Part III Datasets 
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1 Introduction 

In addition to the input datasets discussed in Part I, several basin-wide datasets have 
been developed to support researchers and stakeholders in understanding the evolving 
flood patterns within the MDB. These datasets include consistent time series of water 
depth maps covering the entire basin, a feat that was historically challenging to achieve on 
a large scale. Spanning from 1988 to 2024, with data points every one to two months, 
these datasets were generated using remotely sensed imagery and flood perimeter 
models at an approximate spatial resolution of 30 meters. This comprehensive collection 
provides a detailed depiction of maximum observed inundation depths across the MDB, 
making it ideal for system-wide analyses as well as for investigating the flooding history at 
specific locations within the basin. 

The development of these datasets leveraged the knowledge and input datasets acquired 
through the research activities conducted throughout the RQ7 project (see Part II). Utilizing 
state-of-the-art models, the datasets were meticulously validated against observational 
data and hydrodynamic models to ensure their accuracy and reliability. To facilitate 
ongoing research, we are providing not only the datasets but also visualization tools and 
illustrative examples. 

These datasets are instrumental in examining the relationship between flooding and 
ecological functions, particularly suited for long-term analyses of the MDB as a whole. For 
example, researchers can utilize the data to explore the physical and biological 
connectivity of floodplains and track how these connections have evolved over time. 
Additionally, the datasets are ideal for developing empirical relationships between flooding 
events and ecosystem processes. While they are highly beneficial for analysing the flood 
history of specific areas within the river system, it is recommended to verify their accuracy 
with local data sources where necessary. 

Figure 20 illustrates an example of the maximum floodwater depth computed over a 35-
year period. Notably, linear features running approximately north-south are visible in the 
image, which are attributed to noise from the swath edges of Landsat 5 images during its 
later operational years. These artifacts result from pixels being incorrectly classified as 
water, highlighting the importance of careful data interpretation. 
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Figure 20 (Figure 1 from Penton et al., 2023) Maximum floodwater depth. The maximum floodwater 
depth for MDB calculated from the two-monthly floodwater depth dataset.  
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2 List of datasets and brief descriptions 

Table 7 Datasets on CSIRO Data Access Portal (DAP). 

Name DOI Brief Description 

LIDAR 
enhanced SRTM 
Digital 
Elevation 
Model (DEM) 
for Murray 
Darling Basin 

https://doi.org/10.25919/5n0m-1682 Digital Elevation Models (DEMs) for the 
Murray-Darling Basin at 1 arc second, 
25 metre and 5 metre resolution. 
Elevation for the whole MDB sourced 
from LIDAR where available in June 
2021 and backfilled with hydrologically 
enforced 1 second SRTM. Developed as 
part of the Murray-Darling Water and 
Environment Research Program and 
Murray-Darling Ecosystems Function 
Project. 

Hydrodynamic 
modelling 
results 
collection 

https://data.csiro.au/collection/csiro:54823 Hydrodynamic model calibration results 
were collected from previous flood 
modelling projects carried out in MDB 
by SA Department for Environment and 
Water (DEW), CSIRO, MDBA and NSW 
Office of Environment and Heritage 
(now NSW Department of Planning and 
Environment or DPE) for the 
development and validation of a 
predictive flood inundation and volume 
model. This collection has been 
released to a specified group of 
authorised users for their use only. 

Gauged Data 
for the Murray-
Darling Basin 

https://data.csiro.au/collection/csiro:54834 This data collection is for the gauged 
data that was used in the project. There 
are two main types of gauge data in this 
collection: 1) gauge network 
information, and 2) time series at the 
gauges. The information for each gauge 
were gathered from five sources: 
Bureau of Meteorology (BoM) for the 
streamflow data, and other information 
from the South Australian government, 
Queensland government, MDBA and 
the Australian Water Resources 
Assessment – River (AWRA-R) modelling 
team. This collection has been released 

https://doi.org/10.25919/5n0m-1682
https://data.csiro.au/collection/csiro:54823
https://data.csiro.au/collection/csiro:54834
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to a specified group of authorised users 
for their use only. 

Maximum two-
monthly 
surface water 
extent for MDB 
from MIM and 
WOFS 

https://doi.org/10.25919/wkg9-7t35 The multi-index method (MIM) (refer to 
Ticehurst, Teng and Sengupta 2022 in 
the Related Links for a description of 
the method) was developed for 
mapping surface water across the 
Murray-Darling Basin (MDB) based on 
Landsat surface reflectance data 
available in Digital Earth Australia. More 
than thirty years of two-monthly images 
of surface water extent across the 
whole MDB have been produced using 
this method, along with Water 
Observations from Space (WOfS) to fill 
in any gaps associated with cloud cover 
due to the different cloud masks used. 
The data were produced as part of the 
Murray-Darling Basin Ecosystem 
Function (MDB-EF) and Murray-Darling 
Water and Environment Research 
Program (MD-WERP) projects. Note 
that a new improved version has been 
developed and is expected to be 
released late 2022. 

Two-monthly 
Maximum Flood 
Water Depth 
Spatial 
Timeseries for 
the MDB 

https://doi.org/10.25919/c5ab-h019 The two-monthly spatial layers of 
flooding was developed to represent 
maximum surface water extent and 
water depth within each two-month 
period across the Murray-Darling Basin 
(MDB). This work is based on the multi-
index method (MIM) surface water 
mapping and Digital Elevation Model 
(DEM) using the Floodwater Depth 
Estimation Tool (FwDET). More than 
thirty years of two-monthly images of 
surface water depth across the whole 
MDB have been produced using an 
improved version of the Floodwater 
Depth Estimation Tool (FwDET), first 
developed by Cohen et al. (2018). The 
flood water depth was estimated based 
on spatial time series of two-monthly 
maximum multi-index surface water 
extents 

https://doi.org/10.25919/wkg9-7t35
https://doi.org/10.25919/c5ab-h019
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Data for 
assessing 
floodwater 
depth 
estimation 
models HAND, 
TVD and FwDET 

https://doi.org/10.25919/sq5q-6070 Data resulting from comparison of 
Height Above Nearest Drainage (HAND; 
Nobre et al., 2011), Teng Vaze Dutta 
(TVD; Teng et al., 2013) and Floodwater 
Depth Estimation Tool (FwDET; Cohen 
et al., 2018) with hydrodynamic models 
to produce figures and graphs. 

Maximum two-
monthly 
surface water 
extent for MDB 
from MIM and 
WOFS - Version 
2 

https://doi.org/10.25919/es0k-q169 The multi-index method (MIM) (refer to 
Ticehurst, Teng and Sengupta 2022 in 
the Related Links for a description of 
the method) was developed for 
mapping surface water across the 
Murray-Darling Basin (MDB) based on 
Landsat surface reflectance data 
available in Digital Earth Australia. More 
than thirty years of two-monthly images 
of surface water extent across the 
whole MDB have been produced using 
this method, along with Water 
Observations from Space (WOfS) to help 
fill in gaps associated with cloud cover. 
This is Version 2 of this product, 
spanning from 1988 to June 2022, with 
an updated version from 1988 to 
December 2022. 

Persistent 
water within the 
MDB from MIM 

https://doi.org/10.25919/x1d1-pz44 Thirty-three years of minimum monthly 
images of surface water extent have 
been used to identify persistent water 
within the Murray-Darling Basin (MDB). 
The multi-index method (MIM) (refer to 
Ticehurst, Teng and Sengupta 2022 in 
the Related Links for a description of 
the method) was used for mapping 
surface water across the MDB based on 
Landsat surface reflectance data 
available in Digital Earth Australia. 
Persistent water layers are provided for 
1988 to 2020, 1990 to 1999, 2000 to 
2009 and 2010 to 2019. 

Maximum 
number of 
consecutive dry 
years from two-
monthly 
surface water 
extent for MDB 

https://doi.org/10.25919/8tvg-d885 The multi-index method (MIM) (refer to 
Ticehurst, Teng and Sengupta 2022 in 
the Related Links for a description of 
the method) was developed for 
mapping surface water across the 
Murray-Darling Basin (MDB) based on 
Landsat surface reflectance data 

https://doi.org/10.25919/sq5q-6070
https://doi.org/10.25919/es0k-q169
https://doi.org/10.25919/x1d1-pz44
https://doi.org/10.25919/8tvg-d885
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using MIM and 
WOFS 

available in Digital Earth Australia. More 
than thirty years of two-monthly images 
of surface water extent across the 
whole MDB have been produced using 
this method, along with Water 
Observations from Space (WOfS) to fill 
in any gaps associated with cloud cover 
due to the different cloud masks used. 
The maximum annual water extent was 
derived from the MIM-WOfS layers, 
which were then used to calculate the 
maximum number of consecutive years 
that a pixel is dry from 1988 to 2022, 
and 2010 to 2022 (which excludes the 
Millenium Drought). 

EASI OWS web 
service 

https://data.csiro.au/collection/csiro:57955 Earth Analytics Science Innovation 
(EASI) platform OWS web services 
(WMC, WCS etc), used to publish large 
scale spatial data. Visualisation tools 
and simple analysis tools were provided 
via web browsers. 

Bathymetry-
embedded DEM 
for the Murray-
Darling Basin 
version 2 

https://doi.org/10.25919/t0rw-4e80 Basin-wide Digital Elevation Models 
(DEMs) with embedded bathymetry for 
selected main rivers Murray-Darling 
Basin at 5 metre (GDA2020 Lambert 
Conformal Conic) and 1 second (WGS 
1984) resolution. 

Elevation for the whole MDB sourced 
from lidar and photogrammetry where 
available, from the Geoscience Australia 
elevation data platform in November 
2022, and backfilled with the Forests 
and Buildings Removed global DEM 
(FABDEM). Developed as part of the 
Seamless merging of DEMs project in 
the CSIRO Environment Digital Water 
and Landscapes initiative. 

Where available, channel bathymetry 
data were then merged with the MDB 
DEM at 5 m resolution. 

Maximum two-
monthly 
surface water 
extent for MDB 

https://doi.org/10.25919/zjec-k149 Updated version from V2 with the 
following improvements: 

• Using a new cloud-masking method. 

https://data.csiro.au/collection/csiro:57955
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from MIM - 
Version 2024 

• Refined water detection from 
Landsat imagery in wetlands and 
vegetated areas. 

• Updated to June 2024. 

 

Maximum 
monthly 
surface water 
extent for MDB 
from MIM using 
Landsat and 
Sentinel-2 

https://doi.org/10.25919/z1nc-md19 Similar to above but transitions from 
two-monthly to monthly frequency with 
integration of Sentinel-2 data from 2016 
onwards. 

Two-monthly 
Maximum Flood 
Water Depth 
Spatial 
Timeseries for 
the MDB 
Version 2024 

https://data.csiro.au/collection/csiro:64061 Two-monthly water depth dataset 
based on water extent Version 2024 
with water depth estimation through 
the use of a bathymetry-enforced DEM. 

 

Monthly 
Maximum Flood 
Water Depth 
Spatial 
Timeseries for 
the MDB 

https://data.csiro.au/collection/csiro:64062 Monthly water depth dataset based on 
monthly water extent with water depth 
estimation using water depth 
estimation through the use of a 
bathymetry-enforced DEM 
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Part IV RQ7 Model 
This part is adapted from Teng et al. (2025). 
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1 Introduction 

As the main focus of the RQ7 project, we have developed a daily flood inundation model 
(the RQ7 model) that combined the strengths of an empirical model (RiM-FIM) and a 
simple conceptual model (TVD). The RQ7 model was designed for application across 
major floodplain reaches in the MDB to predict flood inundation extent, depth, and duration 
by integrating Landsat-derived water extents, high-resolution DEMs, and river flow 
measurements. 

To achieve this, we utilized MIM water extents derived from Landsat and Sentinel-2 
imagery of historical flood events. Water depth was estimated using FwDET based on the 
latest basin-wide DEM. We built a relationship between gauged flow characteristics and 
inundation volume using random forest regression. In areas lacking observations, we 
interpolated based on elevation, adopting a methodology similar to RiM-FIM but using the 
TVD approach to reduce depths from higher water levels and eliminate disconnected 
floodplain areas. A volume-tracking component was also developed to estimate daily 
volume gains and losses on the floodplain, ensuring the closure of the water balance. 

The model was developed on the Earth Analytics Science and Innovation (EASI) platform, 
a high-performance data analytics platform that integrates extensive Earth Observation 
(EO) data with other geospatial information and models. The RQ7 model was created 
using Jupyter notebooks on EASI JupyterHub (https://hub.csiro.easi-
eo.solutions/hub/spawn) and utilized cloud computing via Amazon Web Services (AWS) 
Elastic Compute Cloud (EC2). The model code was managed on GitHub 
(https://github.com/MDBAuth/RQ7), leveraging the distributed version control of Git. Input 
and output data were stored on Amazon Simple Storage Service (Amazon S3), accessible 
through the EASI platform or the AWS management console 
(https://csiro.awsapps.com/start#/), enabling modellers to access the data from anywhere 
with a web browser. 

We used the Open Data Cube for spatiotemporal analysis, multi-index methods for water 
detection, and both Landsat and Sentinel-2 imagery. Additionally, we explored the 
potential for integrating emerging technologies as they became available. The model 
underwent rigorous testing and validation against available observations and 
hydrodynamic model outputs at five key locations in the MDB, ensuring its reliability and 
accuracy. 

The RQ7 model enabled more accurate and comprehensive flood inundation predictions, 
supporting systematic management and scenario planning across large areas and long 
simulation periods in the MDB. 

 

https://hub.csiro.easi-eo.solutions/hub/spawn
https://hub.csiro.easi-eo.solutions/hub/spawn
https://github.com/MDBAuth/RQ7
https://csiro.awsapps.com/start#/
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2 Model structure 

The RQ7 model consists of four key components and a series of tools, visually 
represented in Figure 21. Below is a description of these key components: 

2.1.1 Library builder 

This component constructs a library of water depth images. 

Inputs:  
i. Boundary of study window and exclusive areas 
ii. Floodplain footprint mask 
iii. Gauged streamflow timeseries 
iv. DEM and spatial masks, e.g. cloud mask, cover masks, etc. 
v. Landsat and Sentinel 2 images accessed via Open Data Cube 

Outputs:  
i. Library of flood extent and water depth images 
ii. A table summarises the statistics of the library: date, flood volume, streamflow 

characteristics (streamflow on the day, mean streamflow of previous 
3,5,7,10,15,20,25,30,90 days) 

Modules: 
i. 1_library_generation.ipynb 

2.1.2 Flood volume predictor 

This component builds a model/relationship linking streamflow metrics with the flood extent 
and water depth library using a machine learning technique – random forest regression. 

Inputs: 
i. Daily streamflow timeseries (hydrograph) 
ii. The library summary csv file from the first component 

Outputs: 
i. Predicted flood volumes 
ii. Performance summary 

Modules: 
i. 2_flood_volume_prediction.ipynb 

2.1.3 Water depth image generator 

This component creates water depth images for each day of the input hydrograph through 
interpolation of two images from the library. 
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Inputs: 

i. The predicted flood volume from the second component and image library 
from the first component 

Outputs: 

i. The predicted water depth image for each day of the input hydrograph 

Modules: 
i. 3_Geotiff_generation.ipynb 

2.1.4 Floodplain volume tracker 

This component generates volume gain and loss for each day of the input hydrograph. 

Inputs: 
i. The predicted water depth image for each date of the input hydrograph 
ii. SILO rainfall and ET via Open Data Cube 
iii. Soil property layers derived from the nation-wide AWRA soils data 

Outputs: 
i. The predicted volume gain and volume loss for each date of the input 

hydrograph 
ii. Soil moisture content for each day 

Modules: 
i. 4_volume_tracker.ipynb 

2.1.5 Tools 

i. check_flow_volume.ipynb: creates floodplain volume statistics to identify 
problematic input images. 

ii. get_streamflow_from_bom.ipynb: downloads and formats the streamflow data 
from BoM’s Water Data Online website. 

iii. RQ7_runner.ipynb: runs the model components in sequence. 
iv. spatial_correlations.ipynb: calculates spearman’s correlations to identify 

potential exclusion areas. 
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Figure 21 Flow chart showing the structure of the RQ7 model.  
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3 Model validation 

The RQ7 model underwent rigorous testing at five key locations, encompassing a total of 
seven reaches: the Lower Balonne System (LBS_422204), South Australia Murray 
(SA_A4260515), Namoi (Namoi_419039), Gunbower (Gunbower_409207), and three 
reaches in the Lower Murrumbidgee (WP6_410036, WP10_410136, WP12_410041). 
Initial results have been promising, demonstrating strong agreement between the 
modelled and observed water extents. Ongoing updates to the model code are 
incorporating the latest advancements outlined in Part II, further enhancing its accuracy 
and utility. 

The validation process for the RQ7 model’s flood water extent and depth predictions 
involved three key steps: 

1. Comparison with Satellite-Derived Water Extents: 
The model was run over a historical period that included dates for which satellite 
imagery was available. The modelled water extent was compared to the Multi-Index 
Method (MIM)-derived water extent for those dates, and F-statistics (F-stat) were 
calculated to measure the accuracy of the flood extent predictions. The F-statistics, 
defined as 𝐴𝐴𝑜𝑜𝑜𝑜

𝐴𝐴𝑜𝑜+𝐴𝐴𝑝𝑝−𝐴𝐴𝑜𝑜𝑜𝑜
 where Ao is the observed inundation area (from the 

benchmark), Ap is the modelled inundation area, and Aop is the overlapping area, 
provide a quantitative measure of model performance (Dey et al., 2019). 

2. Comparison with Hydrodynamic Models: 
The model was also run for periods corresponding to the calibration times of 
hydrodynamic models. The resulting water extent and water depth predictions from 
the RQ7 model were compared against outputs from the hydrodynamic models to 
evaluate alignment. 

3. Validation Against Remote Sensing and Aerial Photos: 
Finally, the flood water extent predicted by both the RQ7 model and the 
hydrodynamic models was compared to water extent data derived from remote 
sensing images or aerial photographs taken during the calibration periods of the 
hydrodynamic models. 

These validation steps not only highlight the RQ7 model's capability to simulate large-scale 
flood events over extended periods but also provide a robust framework for assessing its 
strengths and identifying areas for improvement. The outcomes offer an invaluable 
resource for researchers and stakeholders, enabling them to better understand the 
model's potential and limitations and apply it effectively to manage the complex 
hydrological and ecological dynamics of floodplains in the MDB. 

3.1 Initial testing sites and planning for model upscaling 
The initial testing sites were chosen to reflect the diversity of riverine environments found 
in the MDB while aligning with the best available models and datasets. The available 
hydrodynamic modelling datasets described in Section 4.2 were used as benchmark to 
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validate the model results. The initial testing sites encompass five locations, and seven 
river reaches in the MDB (Figure 8 and Figure 22). In total, seven calibration events were 
used in the validation of the model (Table 3).  

We have also developed methods to expand the model to other parts of the MDB. This 
requires the division of the Basin into appropriately sized regions through which water can 
travel in around one day (to be consistent with the daily time step of the river system 
model). We have investigated Thiessen polygon and residual catchment for the Australian 
Water Resource Assessment – River System Model (AWRA-R) gauges. The 3D lengths 
for main channels within each region were also calculated. We have collected data that 
are required to estimate average velocity, along with the 3D length, so the appropriate size 
of each region can be determined. Some gauges were eliminated, and some dummy 
gauges were included so that the density of the gauges is even across the Basin. The 
resulting 247 modelling windows across the MDB are shown in Figure 22. 

 

Figure 22 Modelling windows in MDB and initial testing sites.  

 



 

Advancing Floodplain Inundation and Volume Prediction for Water Management  |  53 

3.2 Results 
The results for comparison of RQ7 results with satellite-derived water extents are shown in 
Figure 23. Each box represents the interquartile range (IQR) of F-stat values, with the 
lower and upper bounds showing the 25th and 75th percentiles. Whiskers extend to the 
minimum and maximum F-stat values, excluding outliers. Outliers, if present (e.g., in 
LBS_422204), are plotted as individual points. This plot provides an overview of the RQ7 
model's performance relative to satellite-derived water extents across different testing 
reaches. Most reaches demonstrate strong F-stat values (generally above 0.7), indicating 
a good level of agreement between the RQ7 model predictions and satellite-derived water 
extents. There are variations in performance, which could be due to region-specific 
challenges, such as differences in topography, vegetation cover, or data quality. 

 
Figure 23 A box-and-whisker diagram comparing the performance of the RQ7 model to satellite 
imagery derived water extent using F-statistics across seven different reaches.  

When compared with the hydrodynamic models (HD) using F-statistics (Figure 24), most 
medians are relatively low – below 0.4. This suggest that the RQ7 model exhibits 
moderate to low agreement with hydrodynamic models, with the degree of agreement 
varying significantly across regions. The lower F-stat values could reflect inherent 
differences in the modelling approaches: while the RQ7 model uses simplified methods 
and relies on remote sensing data, hydrodynamic models incorporate detailed physical 
processes. Discrepancies might also arise from differences in input data, resolution, or 
assumptions about flood dynamics. We have also looked at under- and over-estimation 
metrics (not shown) and did not find sign of systematic under- or over-estimation of water 
extent by RQ7 model compared to the HD models. 

The better performance in Gunbower_409207 may reflect more favourable conditions for 
RQ7's methodology (e.g., better quality remote sensing images and less development in 
the region, also contributing to good performance relative to satellite-derived water 
extents), while the poor performance in LBS_422204 could indicate complexities such as 
human intervention, or infrastructure changes that are not fully captured by the RQ7 
model. This variability highlights the need for further refinement of the RQ7 model to 
improve accuracy, particularly in challenging regions. 
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Figure 24 Comparing the water extents modelled by the RQ7 model to those of hydrodynamic models 
using F-statistics across six different reaches. 
Note: the hydrodynamic model calibration event for SA Murray was deemed to be below the over-
bank threshold and was not modelled by RQ7 model. 

Figure 25 compares the Mean Absolute Error (MAE) of water depth predictions from the 
RQ7 model against HD models across six different reaches. Gunbower_409207 exhibits 
the lowest MAE values, with a median around 0.45 m and a narrow interquartile range 
(IQR). This indicates strong agreement between the RQ7 model and HD models, with 
relatively low variability and uncertainty in water depth predictions. WP6_410036 has the 
highest median MAE (~1.5 m), the widest IQR, and several extreme outliers above 3.0. 
This suggests that water depth predictions in this reach are challenging due to factors 
such as highly variable hydrodynamics, dense vegetation, or greater reliance on 
assumptions in both RQ7 and HD models. 

While the analysis focuses on the MAE of the RQ7 model relative to HD models, it's 
important to acknowledge that HD models themselves are not perfect benchmarks. 
Hydrodynamic models are influenced by uncertainties in their calibration, boundary 
conditions, and parameterization. Errors in input data, such as DEMs, river cross-sections, 
or discharge data, can propagate through these models and contribute to discrepancies 
between HD predictions and observed water depths. 

In regions with complex flow dynamics (e.g., WP6_410036 and LBS_422204), the HD 
model's assumptions and simplifications may not fully capture local hydrological 
processes, further compounding the apparent discrepancies when compared to the RQ7 
model. 
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Additionally, HD models are often calibrated to specific events or locations, meaning their 
accuracy may degrade outside of these conditions, introducing additional uncertainty when 
used as a reference for validation. 

 
Figure 25 Comparing the water depth modelled by the RQ7 model to those of hydrodynamic models 
using F-statistics across six different reaches. 

F-statistics were calculated using the flood water extent predicted by both the RQ7 model 
and the hydrodynamic models compared to water extent data derived from remote sensing 
images or aerial photographs taken during the calibration periods of the hydrodynamic 
models, and results are shown in Figure 26. There were a total of 42 such images from all 
six reaches. The RQ7 model consistently achieves higher F-statistics than the HD model 
across most dates, indicating better agreement with satellite-derived water extents. It is not 
surprising that the RQ7 model shows stronger alignment with observed satellite-derived 
water extents, because it is designed to leverage remote sensing data effectively. The HD 
model's lower agreement may stem from inherent uncertainties or assumptions within 
hydrodynamic modelling, such as input parameter sensitivity, terrain representation, or 
boundary condition constraints.  

Overall, this comparison highlights the potential of the RQ7 model for supporting floodplain 
management and decision-making using satellite observations. However, it does not 
necessarily indicate that the RQ7 model outperforms HD models. This is due to 
uncertainties associated with satellite-derived water extents and the fact that each 
modelling approach has its own strengths and limitations depending on the specific 
context and application. 
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Figure 26 A radar chart compares the F-statistics for the RQ7 model (light blue line) and the 
hydrodynamic (HD) model (dark blue line) against satellite-derived water extent. Each axis represents 
a different date on which the F-statistics were calculated. 
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4 Consideration of volume 

The consideration of volume is crucial for effective water resources management. To 
develop the volume tracking component in the RQ7 model, we first investigated the 
potential use of existing models (e.g., Source, as employed by the MDBA and Basin 
States) and data sources (e.g., in situ measurements, remote sensing-derived 
evapotranspiration (ET), and water extent) to approximate floodplain volume for water 
accounting purposes. This initial step aimed to evaluate the reliability of these estimates. 

The RQ7 model can then be utilized to establish the stage height–inundation area–volume 
(H-A-V) relationship for major floodplain river reaches. This relationship serves as a direct 
input to river system models, enabling better accounting for floodplain losses and return 
flows. The research seeks to minimize uncertainty in floodplain volume predictions by 
incorporating critical factors such as floodplain soil physical properties, antecedent soil 
moisture conditions, flood inundation extents, and water depth. 

The model estimates the volume of water gained from rainfall, lost to infiltration (recharged 
into groundwater), and lost to evaporation. These calculations are essential for river 
system modelling, helping to close the water balance on the floodplain and enabling 
accurate water accounting. This integrated approach enhances the precision and 
applicability of floodplain volume estimates for sustainable water resource management. 

Local rainfall, evapotranspiration and infiltration all have substantial impacts on the 
spreading of the flood, and the wetting and drying of the floodplain. We used the module 
implemented in the TVD model to capture these processes. The soil moisture content for 
every grid cell was programmed to be continuously updated throughout the model 
simulation.  

An empirical method – the Horton model (Horton, 1941) – was used to relate infiltration 
rate to elapsed time modified by certain soil properties. The infiltration capacity 𝑓𝑓𝑝𝑝 to time 𝑡𝑡 
relationship may be expressed as 

𝑓𝑓𝑝𝑝 = 𝑓𝑓𝑐𝑐 + (𝑓𝑓0 − 𝑓𝑓𝑐𝑐)𝑒𝑒−𝛽𝛽𝛽𝛽   

where 𝑓𝑓0 is the maximum infiltration rate at the beginning of an event and reduces to a low 
and approximately constant rate of 𝑓𝑓𝑐𝑐 as the infiltration process continues, and the soil 
becomes saturated. The parameter 𝛽𝛽 controls the rate of decrease in the infiltration 
capacity. Horton’s equation is applicable only when effective rainfall intensity is greater 
than 𝑓𝑓𝑐𝑐 and parameters 𝑓𝑓0, 𝑓𝑓𝑐𝑐 and 𝛽𝛽 must be evaluated using observed infiltration data 
(Maidment, 1993). To satisfy these conditions in the model, the infiltration equation will be 
set to be effective only when the rainfall intensity is greater than 𝑓𝑓𝑐𝑐 or when the grid cell is 
covered by flood water. The soil moisture is only affected by evaporation if none of the 
criteria are met.  

As the Horton model typically runs at an hourly time step, while our model operates at a 
daily time step, we have adapted the equation by using its integral to account for the larger 
time interval. This approach allows the model to capture the dynamics of infiltration and 
moisture changes while maintaining consistency with the daily time scale. 
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5 Limitations and next steps 

The RQ7 model is a floodplain inundation prediction model that relies heavily on remote 
sensing imagery, integrating it with other datasets and methodologies to predict floodplain 
inundation. While innovative and effective in many respects, the model is subject to 
several assumptions and limitations tied to the inherent capabilities of remote sensing and 
the modelling approach itself. These include: 

1. Dependence on historical data: 
The RQ7 model can interpolate flood extent and depth within the bounds of 
historical observations but cannot extrapolate beyond them. For instance, if a 
hydrograph extends beyond the historical maximum, the model is constrained to 
predict only the maximum inundation extent and water depth observed in the past. 
This limitation restricts its applicability under extreme or unprecedented conditions 
that fall outside the historical record. 

2. Impact of remote sensing constraints: 
The accuracy of the RQ7 model is influenced by the limitations of remote sensing 
imagery: 

• Cloud cover and scan line errors: Satellite images can be obscured by clouds or 
affected by errors like scan line gaps in Landsat imagery, rendering some data 
unreliable or unusable. 

• Temporal gaps: The return period of satellites, particularly earlier missions, can 
lead to gaps in temporal coverage, limiting the availability of images during key 
flood events. 

• Vegetation cover: Dense vegetation can obscure water detection, reducing the 
accuracy of surface water mapping in forested or heavily vegetated floodplains. 
While improvements are ongoing, these challenges remain a significant 
limitation. 

3. Inability to model human interventions: 
The RQ7 model does not account for human activities such as dam operations, 
water pumping, or irrigation, which can significantly influence floodplain inundation 
patterns. Currently, areas affected by such interventions are excluded from the 
model, which limits its scope and applicability in regions with substantial human 
influence. 

4. Infrastructure and terrain changes: 
The model does not dynamically adapt to changes in infrastructure (e.g., levees, 
channels) or terrain (e.g., sediment deposition or erosion). The solution has been to 
only use satellite images captured after the last known change, which can result in 
a limited dataset and reduce predictive power. 

5. No consideration of disconnected areas: 

The RQ7 model does not account for areas disconnected from the main river 
channel, as defined by persistent water observed in long-term remote sensing data. 
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This may result in inaccurate representation of dead storage during the recession 
phase of a flood event. 

5. Use of arbitrary thresholds: 
A threshold is introduced in the model to distinguish between in-channel and 
overbank flow, filtering out images below this range. This threshold is based on a 
historical 2-in-1 year flood occurrence map, which, while practical, introduces a 
degree of arbitrariness and potential inaccuracies into the modelling process. 

To address these limitations, future research and enhancements to the RQ7 model could 
focus on the following: 

• Expanding the remote sensing library: A more extensive library of satellite imagery 
over time would improve the reliability and accuracy of predictions. Incorporating 
data from newer satellites with higher spatial and temporal resolution can also 
mitigate some of the constraints of earlier missions. 

• Using deep learning for data correction: Advanced machine learning techniques, 
such as Generative Adversarial Networks (GANs), could be employed to remove 
clouds, fill scan line errors, and enhance the continuity and usability of remote 
sensing data. 

• Enhancing water detection in vegetated areas: Continued development of 
algorithms for detecting water beneath vegetation cover would improve the 
accuracy of inundation predictions in forested floodplains. 

• Integrating hydrological and human-influenced data: Incorporating hydrological 
models and datasets that account for dam operations, irrigation, and other human 
interventions could improve the model's ability to simulate real-world conditions. 

• Simulating hydrological processes in disconnected areas: Implementing a simplified 
water balance model to increase or decrease water level based on estimated water 
balance components such as rainfall, evaporation, and infiltration within these 
disconnected regions. 

By addressing these challenges, the RQ7 model can evolve into a more robust tool, 
offering higher accuracy and broader applicability for floodplain inundation prediction and 
management in the MDB and beyond. 
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Acronyms 

AI/ML: Artificial Intelligence/Machine Learning  
ANAE: Australian National Aquatic Ecosystem 
AWRA: Australian Water Resource Assessment 
AWS: Amazon Web Services 
BoM: Bureau of Meteorology 
DAP: Data Access Portal 
DWL: Digital Water and Landscapes 
DEM: Digital Elevation Model 
DTM: Digital Terrain Model 
EASI: Earth Analytics Science and Innovation platform 
EC2: Elastic Compute Cloud (EC2)  
EO: Earth Observation 
FABDEM: Forest And Buildings removed Copernicus DEM 
FwDET: Floodwater Depth Estimation Tool 
GA: Geoscience Australia 
GDEM: Global Digital Elevation Model  
GIS: Geographical Information System 
HAND: Height Above Nearest Drainage   
LiDAR: Light Detection and Ranging 
MDB: Murray-Darling Basin 
MDBA: Murray-Darling Basin Authority 
MDB-EF: MDB Ecosystem Function Project 
MD-WERP: Murray-Darling Water and Environment Research Program  
MIM: Multi-Index Method 
WOfS: Water Observations from Space 
RiM-FIM: River Murray Floodplain Inundation Model 
RQ7: Research Question 7 – Enhancing Floodplain Inundation and Volume Prediction to 
Support Environmental Watering and Water Resources Planning 
SRTM: Shuttle Radar Topography Mission 
SPH: Smoothed Particle Hydrodynamics  
TCW: Tasseled Cap Wetness index 
TVD: Teng Vaze Dutta 
 



 

Advancing Floodplain Inundation and Volume Prediction for Water Management  |  61 

References  

Burke, T., Wanigatunga, S., Kolega, A., 2022.  SDLAM Reconnecting River Country - Hydraulic 
Modelling: Work Package 10 – Hay Weir to Maude Weir - Model User Report. 

Chiew, F.H.S., McMahon, T.A., 1991. The applicability of morton and penman evapotranspiration 
estimates in rainfall-runoff modeling. Water Resources Bulletin 27, 611–620. 

Chiew, F.H.S., Teng, J., Vaze, J., Post, D.A., Perraud, J.M., Kirono, D.G.C., Viney, N.R., 2009. 
Estimating climate change impact on runoff across southeast Australia: Method, results, and 
implications of the modeling method. Water Resour Res 45. 
https://doi.org/10.1029/2008WR007338 

Cohen, S., Brakenridge, G.R., Kettner, A., Bates, B., Nelson, J., McDonald, R., Huang, Y.F., 
Munasinghe, D., Zhang, J., 2018. Estimating Floodwater Depths from Flood Inundation Maps 
and Topography. J Am Water Resour Assoc 54, 847–858. https://doi.org/10.1111/1752-
1688.12609 

Dey, S., Saksena, S., Merwade, V., 2019. Assessing the effect of different bathymetric models on 
hydraulic simulation of rivers in data sparse regions. J Hydrol (Amst) 575, 838–851. 
https://doi.org/10.1016/j.jhydrol.2019.05.085 

Dunn, B., Lymburner, L., Newey, V., Hicks, A., Carey, H., 2019. Developing a Tool for Wetland 
Characterization Using Fractional Cover, Tasseled Cap Wetness and Water Observations 
from Space. International Geoscience and Remote Sensing Symposium (IGARSS) 6095–
6097. https://doi.org/10.1109/IGARSS.2019.8897806 

Dutta, D., Vaze, J., Karim, F., Teng, J., Kim, S., Mateo, C., Marvanek, S., Ticehurst, C., 2016. 
Description of Deliverable : Outputs of Inundation Modelling using Synthetic Flood Events for 
Lower Balonne System. 

Fisher, A., Flood, N., Danaher, T., 2016. Comparing Landsat water index methods for automated 
water classification in eastern Australia. Remote Sens Environ 175, 167–182. 
https://doi.org/10.1016/j.rse.2015.12.055 

Gallant, J., 2019a. Merging lidar with coarser dems for hydrodynamic modelling over large areas. 
23rd International Congress on Modelling and Simulation - Supporting Evidence-Based 
Decision Making: The Role of Modelling and Simulation, MODSIM 2019 1161–1166. 
https://doi.org/10.36334/modsim.2019.k24.gallant 

Gallant, J., 2019b. Merging lidar with coarser dems for hydrodynamic modelling over large areas. 
23rd International Congress on Modelling and Simulation - Supporting Evidence-Based 
Decision Making: The Role of Modelling and Simulation, MODSIM 2019 1161–1166. 
https://doi.org/10.36334/modsim.2019.k24.gallant 

Gallant, J., Wilson, N., Dowling, T., Read, A., Inskeep, C., 2011. SRTM-derived 1 Second Digital 
Elevation Models Version 1.0 [WWW Document]. Geoscience Australia. URL 
https://ecat.ga.gov.au/geonetwork/srv/eng/catalog.search#/metadata/72759 (accessed 
5.19.22). 

Hawker, L., Uhe, P., Paulo, L., Sosa, J., Savage, J., Sampson, C., Neal, J., 2022. A 30 m global 
map of elevation with forests and buildings removed. Environmental Research Letters 17. 
https://doi.org/10.1088/1748-9326/ac4d4f 

Horton, R.E., 1941. An Approach Toward a Physical Interpretation of Infiltration-Capacity. Soil 
Science Society of America Journal 5, 399–417. 
https://doi.org/10.2136/sssaj1941.036159950005000c0075x 



 

62  |  CSIRO Australia’s National Science Agency 

Jeffrey, S.J., Carter, J.O., Moodie, K.B., Beswick, A.R., 2001. Using spatial interpolation to 
construct a comprehensive archive of Australian climate data. Environmental Modelling & 
Software 16, 309–330. 

Lymburner, L., Ticehurst, C., Adame, M.F., Sengupta, A., Kavehei, E., 2024. Seeing the floods 
through the trees: Using adaptive shortwave infrared thresholds to map inundation under 
wooded wetlands. Hydrol Process 38. https://doi.org/10.1002/hyp.15174 

Maidment, D.R., 1993. Handbook of hydrology. McGraw-Hill New York. 
Marvanek, S., Teng, J., Penton, D., Mateo, C., Khanam, F., Ticehurst, C., Vaze, J., 2022. LIDAR 

enhanced SRTM Digital Elevation Model (DEM) for Murray Darling Basin [WWW Document]. 
CSIRO. Data Collection. 

Montazeri, M., Gibbs, M., 2020. Production of 80 000 ML / day flood inundation map for the South 
Australian section of River Murray. 

Morton, F.I., 1983. Operational estimates of areal evapo-transpiration and their significance to the 
science and practice of hydrology. J Hydrol (Amst) 66, 1–76. 

Nobre, A.D., Cuartas, L.A., Hodnett, M., Rennó, C.D., Rodrigues, G., Silveira, A., Waterloo, M., 
Saleska, S., 2011. Height Above the Nearest Drainage - a hydrologically relevant new terrain 
model. J Hydrol (Amst) 404, 13–29. https://doi.org/10.1016/j.jhydrol.2011.03.051 

NSW OEH, 2017. Lower Namoi Valley floodplain model development Final report NSW Office of 
Environment and Heritage Final Report. 

Overton, I.C., Mcewan, K., Gabrovsek, C., Sherrah, 2006. Water for a Healthy Country The River 
Murray Floodplain Inundation Model (RiM-FIM) Hume Dam to Wellington CSIRO Water for a 
Healthy Country Technical Report. 

Penton, D.J., Overton, I.C., 2007. Spatial Modelling of Floodplain Inundation Combining Satellite 
Imagery and Elevation Models. 

Potter, N.J., Zhang, L., 2009. Interannual variability of catchment water balance in Australia. J 
Hydrol (Amst) 369, 120–129. https://doi.org/10.1016/j.jhydrol.2009.02.005 

Sims, N., Anstee, J., Barron, O., Botha, E., Lehmann, E., Li, L., Mcvicar, T., Paget, M., Ticehurst, 
C., Van Niel, T., Warren, G., 2018. Earth observation remote sensing A technical report to the 
Australian Government from the CSIRO Northern Australia Water Resource Assessment, part 
of the National Water Infrastructure Development Fund: Water Resource Assessments. 

Sims, N.C., Warren, G., Overton, I.C., Austin, J., Gallant, J., King, D.J., Merrin, L.E., Donohue, R., 
McVicar, T.R., Hodgen, M.J., D.J., P., Chen, Y., Huang, C., Cuddy, S., 2014. RiM-FIM 
Floodplain Inundation Modelling for the Edward-Wakool, Lower Murrumbidgee and Lower 
Darling River Systems. Report prepared for the Murray-Darling Basin Authority. 

Teng, J., Chiew, F.H.S., Yang, A., Zheng, H., Penton, D.J., Ticehurst, C., Marvanek, S., Vaze, J., 
Khanam, F., Post, D.A., Pollino, C., 2024. Floodplain inundation in the Murray-Darling Basin 
under current and future climates . 

Teng, J., Jakeman, A.J., Vaze, J., Croke, B.F.W., Dutta, D., Kim, S., 2017. Flood inundation 
modelling: A review of methods, recent advances and uncertainty analysis. Environmental 
Modelling and Software 90. https://doi.org/10.1016/j.envsoft.2017.01.006 

Teng, J., Vaze, J., Dutta, D., Marvanek, S., 2015a. Rapid Inundation Modelling in Large 
Floodplains Using LiDAR DEM. Water Resources Management 29. 
https://doi.org/10.1007/s11269-015-0960-8 

Teng, J., Vaze, J., Dutta, D., Marvanek, S., 2015b. Rapid Inundation Modelling in Large 
Floodplains Using LiDAR DEM. Water Resources Management 29. 
https://doi.org/10.1007/s11269-015-0960-8 

Teng, J., Vaze, J., Kim, S., Dutta, D., Jakeman, A.J., Croke, B.F.W., 2019. Enhancing the 
Capability of a Simple, Computationally Efficient, Conceptual Flood Inundation Model in 



 

Advancing Floodplain Inundation and Volume Prediction for Water Management  |  63 

Hydrologically Complex Terrain. Water Resources Management 33. 
https://doi.org/10.1007/s11269-018-2146-7 

Teng, J., Vaze, J., Kim, S., Dutta, D., Jakeman, A.J., Croke, B.F.W., 2018. Enhancing the 
capability of a simple, computationally efficient, conceptual flood Inundation model in 
hydrologically complex terrain. Water Resources Management. 
https://doi.org/http://dx.doi.org/10.1007/s11269-018-2146-7 

Teng, J., Yang, A., Penton, D., Ticehurst, C., Marvanek, S., Vaze, J., Chiew, F., Bridgart, R., 
Mateo, C., Khanam, F., Brennan, E., Post, D., 2025. A novel approach leveraging remote 
sensing data to enhance flood inundation prediction. Environmental Modelling & Software. In 
preparation. 

Tetley, D., 2022. Sustainable Diversion Limits Adjustment Mechanism (SDLAM) - Hydraulic 
Modelling: Model User Report. 

Ticehurst, C., Teng, J., Sengupta, A., 2022. Development of a Multi-Index Method Based on 
Landsat Reflectance Data to Map Open Water in a Complex Environment. Remote Sens 
(Basel) 14. https://doi.org/10.3390/rs14051158 

Vaze, J., Mateo, C.M., Wang, B., Teng, J., Marvanek, S., 2018. AWRA-L input spatial layers at 1 
km and 5 km resolutions for the Australian continent - Source data and comparison between 1 
km and 5 km resolutions 121. 

Wells, M., Streeton, N., 2022. SDLAM Reconnecting River Country - Hydraulic Modelling: Work 
Package 12 – Lowbidgee Wetlands - Model User Report. 

Xu, H., 2006. Modification of normalised difference water index (NDWI) to enhance open water 
features in remotely sensed imagery. Int J Remote Sens 27, 3025–3033. 
https://doi.org/10.1080/01431160600589179 

Yamazaki, D., Ikeshima, D., Sosa, J., Bates, P.D., Allen, G.H., Pavelsky, T.M., 2019. MERIT 
Hydro: A High-Resolution Global Hydrography Map Based on Latest Topography Dataset. 
Water Resour Res 55, 5053–5073. https://doi.org/10.1029/2019WR024873 

Zheng, H., Chiew, F., Post, D., Robertson, D., Charles, S., Grose, M., Potter, N., 2024. Projections 
of future streamflow for Australia informed by CMIP6 and previous generations of global 
climate models. J Hydrol (Amst) 636, 131286. 
https://doi.org/https://doi.org/10.1016/j.jhydrol.2024.131286 

  

 

 



 

64  |  CSIRO Australia’s National Science Agency 

As Australia’s national science agency 
and innovation catalyst, CSIRO is 
solving the greatest challenges 
through innovative science and 
technology. 
CSIRO. Unlocking a better future for 
everyone. 

Contact us 
1300 363 400 
+61 3 9545 2176 
csiroenquiries@csiro.au 
www.csiro.au 

For further information 
Environment 
Dr David Post 
David.Post@csiro.au 
www.csiro.au/en/research/natural-
environment/water/Murray-Darling-Basin/MD-WERP 

 

 


	Foreword
	Contents
	Figures
	Tables

	Acknowledgments
	Executive summary
	Part I Review and Input Data Preparation
	1 Introduction
	2 Commonly used flood inundation models
	3 Review of previous flood studies in MDB
	4 Input data preparation
	4.1 DEMs
	4.1.1 DEM fusion
	4.1.2 Latest version of DEM
	4.1.3 Integrating bathymetry into the DEM

	4.2 Hydrodynamic modelling results
	4.3 Gauged flow, water level and cross section
	4.4 Soil property data
	4.5 Climate data

	Part II Research
	1 Introduction
	2 Surface water detection from satellite imagery
	2.1 Development of Multi-Index Method (MIM) surface water detection algorithm
	2.2 Incorporating Sentinel-2 data
	2.3 Investigating new cloud masking algorithm
	2.4 Improving MIM method for wetlands
	2.5 Developing an innovative method to detect water under vegetation

	3 Benchmarking water depth estimation models
	4 Creating a Basin-wide water depth dataset
	5 Development of a floodplain ecological response model
	6 Linking floodplain inundation with climate
	Part III Datasets
	1 Introduction
	2 List of datasets and brief descriptions
	Part IV RQ7 Model
	1 Introduction
	2 Model structure
	2.1.1 Library builder
	Inputs:
	Outputs:
	Modules:

	2.1.2 Flood volume predictor
	Inputs:
	Outputs:
	Modules:

	2.1.3 Water depth image generator
	Inputs:
	Outputs:
	Modules:

	2.1.4 Floodplain volume tracker
	Inputs:
	Outputs:
	Modules:

	2.1.5 Tools

	3 Model validation
	3.1 Initial testing sites and planning for model upscaling
	3.2 Results

	4 Consideration of volume
	5 Limitations and next steps
	Acronyms
	References

